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Abstract 
 
    This paper is devoted to recent developments in mathematical modelling of radiation of high-frequency elastic  
fields, with applications to the ultrasonic non-destructive evaluation of industrial materials. It concentrates  
on new semi-analytical models of the radiating near field of ultrasonic transducers that have produced fast and 
accurate computer code, which have been already  partially validated.  
 
Introduction 
 
   The phenomenon of radiation of the high-frequency elastic fields are of interest in applied mathematics and a 
variety of applications, such as  the ultrasonic NDE (Non-Destructive Evaluation) of industrial materials.  The 
underlying mathematical model is an initial boundary-value problem based on a set of hyperbolic partial 
differential equations in particle displacement, known as the elasto-dynamic or Lam`e equations. The first codes for 
simulating ultrasonic phenomena have been based on various finite-difference or finite-element schemes designed 
to solve such equations directly or else on numerical algorithms for direct evaluation of their solutions in the 
integral form. At high frequencies, the latter procedures involve evaluating integrals of rapidly oscillating 
functions. Both types of the direct codes - even 2D - have long run-times and because of the computer memory 
required, many 3D versions are still rather impracticable. For these reasons, in recent years more and more 
effort has been put into various approximate schemes, such as those based on the ray theory and the Gaussian beam 
approach. In this paper we concentrate on the former. 
   It has been pointed out in [1] that the success of the approximate codes, which are based on the ray theory is due 
to the fact that even the broad-band pulses produced by industrial ultrasonic transducers contain mainly high 
frequencies, and this means that the modern diffraction theory based on high-frequency asymptotics may be 
employed to refine them.  Numerical experimentation shows that in many cases, for the asymptotics to be 
applicable, frequencies have to be only relatively high. Transducers are extended sources, whose characteristic 
sizes are at least a few characteristic wave lengths, which is about one millimetre in steel.  We follow [1] in 
employing the so-called two-tier approach to describe their first Fresnel zone, with the evanescent zone excluded 
(in other words, their radiating near zone, from a couple to about 80 wave lengths away).  The far-field 
approximations can be obtained by using the same approach, but they have been known for some time, and for this 
reason, lie outside the scope of this paper.  
 
The two-tier asymptotic approach 
 
   The two-tier asymptotic approach to evaluating harmonics of the transducer impulse response comprises two 
steps: i) the face of the source is assumed to be covered by Huygens' point sources and their far field approximation 
is found;    ii)  the uniform stationary phase method is applied to evaluate asymptotic contribution  to  the resulting 
surface – Rayleigh – integral of a few critical points or lines.  The two-tier methodology is quite common in the 
NDE literature, but unlike with the fully asymptotic approach advocated here, the second tier usually involves 
numerical integration over the whole surface.  Once the harmonics of the transducer impulse response are found it 
is convolved in the discretised frequency domain with the transducer pressure pulse and the numerical harmonic 
synthesis is performed to simulate the radiated  pulse trains.  Note that the actual received signal as measured by 
the ultrasonic transducer is proportional to the normal component of the velocity field,  that is the time derivative of 
particle displacement rather than the displacement itself. This is the quantity measured by the ultrasonic transducer.    
   The procedure has been shown to work by using realistic pulses, similar to those emitted by industrial ultrasonic 
transducers, and comparing the exact and asymptotic codes – see e.g. [2].   The reason for success is the fact that in 
the realistic pulses most energy is contained in the high-frequency end of the spectrum.  Let us describe 
various elements of the methodology mentioned above in more detail.  We start with 
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The Uniform Stationary Phase Method 
 
   Outside the evanescent zone, each harmonic of the radiated field may be represented as an integral containing a 
fast-oscillating exponent (see Fig. 1) and a slowly-varying amplitude. It is well known that apart from singularities 
of this amplitude the main contributions to such integrals come from the stationary points of the phase and various 
types of  critical edge points (see e.g. [3] - [5]).   In physical terms, the contributions of the isolated critical points  
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Figure 1: A schematic representation of the real or imaginary part of the fast-oscillating exponent as a function of 
position. 

 
describe  geometrical zones, where we have compressional and shear plane waves as in the GE (Geometrical 
Elasto-Dynamics), edge waves as in the Keller's GTD (Geometrical Theory of Diffraction - see e.g. [6] , [7]) or else 
head waves [5].  The coalescing critical points describe various transition zones in-between the geometrical 
regions.  Such transition zones are sometimes called boundary layers [8] , the most well known being  penumbrae, 
which surround the geometrical shadow boundaries and caustic regions, which separate regions reached by 
different number of diffracted rays. Focal lines are often described as degenerate caustics. There are also boundary 
layers surrounding the critical head rays [5].  The amplitudes of harmonics propagating in the geometrical zones are 
described in terms of elementary functions while the standard transition zone asymptotics, in terms of the Fresnel 
integral in penumbras, Airy Functions near caustics, Bessel functions in focal regions and parabolic cylinder 
functions in the transition zones surrounding the head critical rays. 
   Thus, the uniform stationary phase method provides a unifying framework for obtaining description of GE and 
GTD regions as well as the transition zones in between.  It can be applied to describe the fields emitted by point 
and extended sources and scatterers.  
 
Radiating near field of ultrasonic circular transducer  
 
   Many industrial components are made of materials that can be considered isotopic on the millimeter scale.  One 
such material is ferritic steel used e.g. in the UK nuclear industry for construction of the nuclear power pressure 
vessels and in the UK chemical industry for construction of high pressure reaction vessels. For this reason, quite a 
few direct numerical models of ultrasonic transducers directly coupled to an isotropic half-space have been studied 
in the literature (see e.g. [9] – [13].) Approximate schemes based on the ray theory and various simplified 
treatments of amplitude have been offered in e.g. [14]  - [16].  An approximate, Kirchhoff, model of a large 
compressional piston-type (circular) source directly coupled to the isotopic half-space has been offered in [1]  (see 
also [2] ).  It has been demonstrated to be tens of thousands times faster than any direct scheme but just as accurate. 
The GE contributions to the Rayleigh integral over the transducer surface come from the so-called specular points 
on the transducer surrface, while the GTD waves arrive from the neighborhoods of the flash points on the edge (see 
Fig. 2).  Thus, the radiating near field of the ultrasonic transducer may be described in the following terms: In the   
                                                                                            z 
                                                                                                                                                                        x 
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                                                                             xspecular 
                                                                                                                                                                                                         
Figure 2:  A typical observation point x and specular and flash points xspecular and xflash on a circular transducer. 
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geometrical zones, we have a superposition of contributions of isolated critical points, that is, the main P  and  S  
beams and  P and  S  edge waves radiated by the edge of the transducer as well as head waves (see Fig.   3). 
 
(a)               (b) 

Figure 3: The wave fronts in geometrical zones (a) and transition zones (b) underneath a circular transducer acting 
normally to the surface of a half-space. Solid line - P  fronts, dashed line -  S  front. Light-shaded area - penumbra 
(Fresnel's function), dark-shaded area - the axial zone (Bessel's functions). The arrows indicate the wave 
polarization. The conical head wave front is not indicated.   
 
The head waves and waves in the in the vicinity of the critical head rays are relatively small and can be neglected, 
but for completeness, the uniform stationary phase method has been applied in [17] to evaluate the corresponding 
high-frequency asymptotics.  So far, apart from the uniform circular transducers, the approach has been applied to 
rectangular transducers [18] as well as transducers of various apodizations [19] and [20]. By the same token, an 
alternative fast and accurate asymptotic method has been proposed for simulating the transient field radiated by a 
circular normal transducer directly coupled  to a  homogeneous and isotropic elastic half-space based on the wave-
front expansions of the impulse response (rather than the high-frequency asymptotics of its harmonics), and then its 
numerical time convolution with the transducer pressure pulse [21] (see Fig. 4, where the   model parameters are 
chosen to approximate realistic conditions, namely  the wave speeds are  cP = 5840  m/s and  cS = 3170  m/s;  the 
solid density  ρ = 7770  kg/m3; and the pressure  amplitude  P0 = 1  MPa.) For simplicity of presentation, the 
pressure input is assumed to be a narrow band pulse, one cycle of sin (2π f t) with f = 5 MHz.) The uniform 
rectangular transducers produce a much simpler response in the near field: The biggest contribution is the plane 
wave. The pulse trains produced by the circular transducers are more complicated due to focussing of both P and S 
edge waves on the transducer axis.   
 
 
 

 
Figure 4: Typical waveforms of the particle velocity at the e3  - axis of a (a) circular and (b) rectangular transducer. 
Solid and dashed lines are the exact and asymptotic solutions respectively. DP - the direct  P  wave, EP, ES  or EH  
- the edge  P ,  S  or head  wave from the point Ei  and  CPi, CSi or CHi  - the corner P,  S  or head wave from the 
point Ci.   
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Conclusions       
 
   We have developed codes based on high-frequency asymptotics to model the near radiating fields of normal 
ultrasonic transducers directly coupled to isotropic or transversely isotropic component.  Similar codes are being 
developed for  angled beam fluid-coupled transducers (all we need are the corresponding boundary conditions, then 
we can find the corresponding Lamb’s Green’s function  and  apply the two-tier asymptotics).  The asymptotic  
codes have been tested  against direct codes: They  are tens  of thousands times faster and within their region of 
applicability,  are practically just as accurate.  The speed is partly due to the fact that only contributions of a few 
specular and flash points are taken into account.  The region of applicability is wider than that of many other 
approximate schemes or even direct codes.  The approach elucidates the physics of the problem and gives the 
explicit dependence on model parameters.  It would be possible to develop the asymptotic code further to simulate 
propagation through curved and multiple interfaces as well as materials with continuously varying properties.  The 
next step is the full radiation – scatter – reception model in  the radiating near field. 
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