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Abstract

A novel mode is developed to calculate field-point
waveforms for a circular compresson wave
transducer water-coupled to a solid medium. The
model makes use of known theory for propagation
into a fluid medium and takes account of refraction
and mode conversion at the fluid solid interface.
Calculations made using the model are compared with
experimental measurements of field-point waveforms
made using a miniature piezoelectric receiving probe.
The results obtained are relevant to immersion NDT.

I Introduction

Analytic solutions are available for the ultrasonic
field radiated into a fluid medium ([1], for instance).
In solids, were both longitudina (compression) and
transverse (shear) waves can propagate, the problem is
more complicated and analytic solutions are generally
not available. Exact numerical solutions using finite
dement and finite-difference[2] methods for the field
in a solid have been given but are very time
consuming. Other related work includes plane and
edge wave modelq3], approximate integra
formulationg[4], asymptotic methodg5] and the
Cagniard method([6], for instance]). Here, we develop
approximate integral formulations for the field in
solids due to an angled, water-coupled transducer. An
efficient method to evaluate the integral expressionsis
given. The results obtained are explained in terms of
plane and edge waves.

Il Theory

Figure 1 shows the model geometry. A Cartesian
coordinate system is set with the origin at the centre of
the source, the XY plane being pardld to a plane
fluid/solid interfface. Throughout, the angular
aignment g, of the source is such that its axis lies on
the XZ plane. The piston source radiates compression
waves into the fluid medium, to be refracted and mode
converted at the fluid/solid interface. Consider the ray
path of a wave radiating from a genera source point
Xo. The ray reaches field point Xs along a unique path
XoXiXs. Where X, is the point where the path crosses
the interface. However such paths cannot be found
andyticaly. X, and X, are the projections of points X,
and X; onto the interface. Path XX Xs and its
projection % XX lie on the same plane, the plane
being perpendicular to the interface. The line XoXs
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and the projection X, X, intersect at X,. The incident
angle q, of each ray path and the angle of refraction gr
in the solid are related by Snell’s Law.

Consider an idealised piston source undergoing
impulsve motion and radiating into a fluid. The
impulsive particle velocity potential at a general point
X in the fluid from the vicinity s around the source
point X, has been given by [1],

@)

where C; is the propagation velocity in fluid, t isthe

arrival time at apoint X; for a contribution leaving the
source point X, a timet, , and W,_ (X ,t; X,,t,) isthe
angle of equidistant arc subtended on the source
surface at timet .
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Figure 1. 3D Model geometry
Accordingly, the particle velocity is given by
1 a8f, s (X 6 X0,8) 6
-~ d, f 0’0 = (2)
Cs g it 7]
The present model assumes that the incoming waves
a the solid surface can be considered locally plane,
the particle velocity within the solid becoming
ud,s | (Xsit; XOitO) :ud,s (Xf ,t; XO’tOW(Xs’t; XO!tO) (3)

ud,s t (XS’t; Xovto) :ud,s (Xf 1t; Xovto)lvt(xsvt; X01t0) (4)
where WGt X0,t)) and Wi(Xst, Xoto)  are the
refraction coefficients for compression and shear
waves, respectively. Integrating over the whole source
to give the impulse response and convolving this with
the source velocity driving function v(t), we express
the compression particle velocity components as,

U (X, :v(t)*%%@'nql QOB (Xt X (X, %, 1)

Uy s (X6 X,,t) =



WCU 2003, Paris, september 7-10, 2003

Y, (X, =v() *%% GG, SnaW(X,t; X, L)W, (Xt X, 1)

17,
ul,z(xsit) = V(t) *E%O;OSJIVVI (Xs!t1 XOItO)VVds (Xf ,t, Xovto)
©)

Similarly for the shear wave, the particle velocity
components are given by,

U, (X,t) = V(t)* @inth(x £ X0 ) Wi ( X118 Xo,t)

aom
0 (X 1) = V(t)*ao tcs:osqlcosaW(x 1% )W (X, 6 X0, 1)
W, (X ) =v() * — ﬂ(‘;:osqsmavwxst Yo We (Xt %,1)

P 1

©)

11 Numerical Calculation

The surface integrals within Egns (5) and (6) cannot
be solved explicitly. Here we give an efficient
numerical evaluation that makes use of a coordinate
transformation to divide the source into surface
elementsin away that exploits symmetry and leads to
a reduction in iteration times when caculating ray
paths.

A Coordinate transfor mation

ZY x (rS1 f S ZS: )
Z S
Interface A o /e «Xs; ¥Ys, Zs)
Xy f Solid
Parallel (T, Z) Flid
(x,v,2)
X
....... .

= Projection of
~  OX on source

‘X, & surface
&Projection of X axis
Parallel on source surface

Figure 2: Coordinate transformation

Referring to  Figure 2, we introduce a new
cylindrical polar coordinates system (r, f, z). The
origin O isset a points X, that give the shortest travel
time from the source surface to a given point X; in the
solid. Such minimum time paths must leave the source
a norma incidence. Since X, lies a different
positions for the compression and shear waves, O will
shift accordingly. The Z axis is perpendicular to the
source surface and for f = O, r lies in a direction
paralel to the projection of OX on the source surface.
Transformations from the Cartesian system OXYZ are
given by,

éxu écosq, O sng,ué,cosf,+rcosf u
U_ e aé a
ey .0 0O 1 uérsmf +r sinf ,(10)

ez %anA 0 cosq,Hg Z H
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where (ro, f o, Zo) are the cylindrical coordinates of
the source centre.

B Sour ce surface elements
A generad source dement is shown in Figure 3

represented by a point of coordinate (r;,fj,z) where
Z =0. The element is bounded by arcs r = rj+Dr/2
andr = ri-Dr/2, and radiusf =f; -Df /2andf =f; -
Df /2. The source elements are incremented as,

r=ibr, Dr=c.Dt, i =1---,N(f )

f,=jDf, Df =2p/N,;, j=1---,N (19
(f,)/Dr,
Mm@ ;) being the distance from O to the source rim
at angle divison f; In the current work sufficient
accuracy was obtal ned by setting N; = 180.

Note that there is symmetry to the planef =0 for the
contribution from each element of the source, for
example pairs Aand A. This leads to a reduction in
overal caculation times. For example, when X, lies

on the source diameter, the number of caculations is
halved

where Dtisatime step, and N (f )=r.

rim

ri'D/Z rI+D./2
f,-Df /2

(riv f]1 0)
£, -Df 12)

Figure 3: Symmetry in the polar coordinate system

C Propagating path

Considering the ray path from source element
(r,f 1,0) in Figure 3, X, must lie between point X, and
Xs , but its position cannot be found analytically. Here,
we iterate towards a sufficiently accurate solution. We

firt st X!, =X,and X7 =X . Set either
X, =X, ifi =0and X? isbetween X, and X,,
or set Xi = X?°,, where X} 1j IS approximation of
1 Isbetween

X, and X, . Theerror at the current iteration is given

by

c
Err— S

i-1,j
X, for source element (ri1,f ;,0), if X}

X0 X %0 ul
o |X0)- o] |XT - X,
the propagatl on velocity for either the compression or
the shear wave in the solid. If Err is -tve, X, =X ,if

where C, is




Err is +tve, X7 =X7. Set X, =X}, +X?, agan
and continueuntil Err £0.01,then X, » X?; .

D Numerical integral procedure
When caculating the impulse response, we

increment time according to t, =t +(k- 1)Dt,

k=1---,N,, N,=t;,/Dt, where t; is the
maximum travel time from source rim to X.. It was
found that a time increment of 10 ns gave a good
compromise between accuracy and calculation times.
Using the propagation path as found in section C
above and equations (11), (3) and (4), the compression
and shear contribution of each source element is
calculated. Summation according to (5) and (6), and
repesting for each time step gives the overall impulse
response at a given point in the solid.

Note that, of itsdf, the origin shift in the coordinate
transformation of A above leads to a reduction in
calculation times by ensuring that each element in the
surface integral contributes to the impulse response in
time sequence.

IV Results
A Measurement set up

The measurement set up is shown in Figure 4 and is
discussed in greater detail elsewhere][7]. A single disc-
shaped test piece was used for all of the results given
here. The test piece was constructed from mild steel
with density r = 7800 kgm *, and compression and
shear wave velocity 5960ms™* and 3210ms,

respectively.

Constant To AID

Pressure * *

Miniature
Probe

g

Figure 4: Measurement set up

Head amplifier

10mm

Transmitting
Transducer

The waveforms at the surface of the test piece were
measured with the miniature probe supported by a
specialy constructed jig to avoid any variation in
coupling conditions. It has been shown that to a
reasonable approximation, such a probe measures the
normal component of particle velocity in asolid [7].

The transmitter was a wideband Panametrics
transducer of diameter 19mm, that gave a short pulse
approximating to 1 cycle at 2MHz. Its orientation to
the solid surface and its position in 3 axes could be
adjusted.
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B Normal incidence

Figure 5 shows measured and calculated results
made using the new modd for axia field-point
waveforms in steel (meta path 10mm) with the
transmitting transducer normally coupled at various
water paths. The results are shown to the same time
scae, but a different arbitrary, time origin is used for
each result. The first pulse to arrive labelled PC is due
to reception of the “plane compression” wave[3] from
the transducer. The time differences between PC and
the pulses labelled EC (“edge compression’[3]) are
consistent with the reception of a wave from the rim
of the source, allowing for refraction and taking the
compression wave velocities in the fluid and solid.
Similarly, the arrival times of te ES (“edge shear”)
pulses are consistent with reception of waves from the
source rim that propagate at the compression wave
velocity in the fluid and the shear-wave velocity in the
solid. As in earlier work[3], the origin of the shear
edge wave is explained as a result of partia mode
conversion of the compression edge wave. Since the
refraction angles decrease as the coupling path
increases, such mode conversion will aso decrease
with coupling path, an effect that can be seen in the
results of Figure 5.

In general there is good agreement between the
measured and caculated results, justifying the
assumptions made in developing the model.

Measured  Water path (mm) Calculated
~ PC, EC PC
ES EC
e ST ES
42
el o 36 [
30 -
’ 24 - =
18 |
e i 12 !
6
15 § 7 W 335
Time ns Time ns

Figure 5: Field-point waveforms in steel using various
water paths. Incident angle: normal.

C Obliqueincidence
As can be seen in the results of Figure 6, at oblique

incidence the incident compression plane wave can
partially mode convert to give a shear plane wave in
the solid. According to the present modd, for oblique
incidence at less than the 1™ critical angle, the field in
a solid has four components. a compression plane
(PC) and edge wave (EC) and a shear plane (PS) and
edge wave(ES).
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The results given in Figure 6 are for four positions
of the transmitting transducer along the X axis ( see
Figure ). Position @) gives a maximum amplitude
for the compression edge wave as received by the
miniature probe: similarly () gives a maximum for
the shear edge wave. We define these positions as the
“focus’ for each edge wave. Since at oblique
incidence we have an dlliptic beam in the solid, the
foci do not in general correspond with the axes of the
corresponding plane wave beams — unlike the
Situation at norma incidence, where as a result of
circular symmetry, the edge wave pulses are
maximum on the axis. At the focus of the
compression edge wave (@), the shear plane wave is
smdler than in (d) since in (a) the shear plane wave
beam is just beginning to “miss’ the receiving probe.
Results (b) and (c) show the plane- and edge-wave
components at positions in between the two foci.

Measured Calculated
PC gc PS ES PC _EC PS ES
e d
c
b
a
Time nz Time n<

Figure 6: Field-point waveforms at the same range in steel
but at different field-point positions. Water path: 6mm;
incident angle: 12° .
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Figure 7: Field-point waveformsat various angles of
incidence. Water path: 6mm (from centre of transducer).

Figure 7 shows how the field-point waveforms
change with incident angle from G to 12°. In each
case, the measurements were made at the focus of the
shear edge wave. As we would anticipate from well-
known refraction coefficients, we see an increase in
amplitude of the shear plane wave with incident angle.

1544

The change in amplitude with angle of the
(“focussed”) shear-edge wave pulse is due to a
combination of refraction and the directivity of the
incident compression edge wave.

V Conclusion

Experimental  measurements  of  field-point
waveforms in steel show that the field radiated into a
solid by a water-coupled, compressionwave
transducer can be explained in terms of four main
components. compression plane- and edge-waves, and
shear plane- and edge-waves. The measurements were
made a the sted surface usng a miniature
piezoel ectric probe that approximately responds to the
normal component of particle velocity.

Corresponding numerica caculations - made using
a mode that assumes the rays from each element of
the source are refracted and mode converted according
to well-known refraction coefficients for plane waves
- agree well the measurements. The model makes use
of coordinate transformations to exploit symmetry and
reduce cal culation times.

The plane and edge-wave description of the pulsed
field is useful in describing the complicated structure
of the field in solids. Note that even at incident angles
between the # and 2° critical angles, where only
shear waves exist in the solid, the field still has a
plane- and edge-wave structure.
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