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Abstract 

A novel model is developed to calculate field-point 
waveforms for a circular compression wave 
transducer water-coupled to a solid medium. The 
model makes use of known theory for propagation 
into a fluid medium and takes account of refraction 
and mode conversion at the fluid solid interface. 
Calculations made using the model are compared with 
experimental measurements of field-point waveforms 
made using a miniature piezoelectric receiving probe. 
The results obtained are relevant to immersion NDT. 
 
I Introduction 

Analytic solutions are available for the ultrasonic 
field radiated into a fluid medium ([1], for instance). 
In solids, were both longitudinal (compression) and 
transverse (shear) waves can propagate, the problem is 
more complicated and analytic solutions are generally 
not available. Exact numerical solutions using finite 
element and finite-difference[2] methods for the field 
in a solid have been given but are very time 
consuming. Other related work includes plane and 
edge wave models[3], approximate integral 
formulations[4], asymptotic methods[5] and the 
Cagniard method([6], for instance]). Here, we develop 
approximate integral formulations for the field in 
solids due to an angled, water-coupled transducer.  An 
efficient method to evaluate the integral expressions is 
given. The results obtained are explained in terms of 
plane and edge waves. 
 
II Theory 

Figure 1 shows the model geometry. A Cartesian 
coordinate system is set with the origin at the centre of 
the source, the XY plane being parallel to a plane 
fluid/solid interface. Throughout, the angular 
alignment θΑ of the source is such that its axis lies on 
the XZ plane. The piston source radiates compression 
waves into the fluid medium, to be refracted and mode 
converted at the fluid/solid interface. Consider the ray 
path of a wave radiating from a general source point 
X0. The ray reaches field point Xs along a unique path 
X0XIXs. where XI  is the point where the path crosses 
the interface. However such paths cannot be found 
analytically. X0

’ and Xs
’ are the projections of points X0 

and Xs onto the interface. Path X0XIXs and its 
projection X0

’XIXs
’ lie on the same plane, the plane 

being perpendicular to the interface. The line X0Xs  

and the projection X0
’ Xs

’ intersect at XI
’.  The incident 

angle θI of each ray path and the angle of refraction θR 
in the solid are related by Snell’s Law.  

Consider an idealised piston source undergoing 
impulsive motion and radiating into a fluid. The 
impulsive particle velocity potential at a general point 
Xf in the fluid from the vicinity σ  around the source 
point X0 has been given by [1],    
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where fc  is the propagation velocity in fluid, t is the 
arrival time at a point Xf  for a contribution leaving the 
source point X0 at time t0 , and 0 0( , ; , )fX t X tδ σΩ  is the 
angle of equidistant arc subtended on the source 
surface at time t . 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 1: 3D Model geometry 

Accordingly, the particle velocity is given by 
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The present model assumes that the incoming waves 
at the solid surface can be considered locally plane, 
the particle velocity within the solid becoming 

, , 0 0 , 0 0 0 0( , ; , ) ( , ; , ) ( , ; , )l s f l su X t X t u X t X t W X t X tδ σ δ σ= (3) 

, , 0 0 , 0 0 0 0( , ; , ) ( , ; , ) ( , ; , )t s f t su X t X t u X t X t W X t X tδ σ δ σ= (4)
where Wl(Xs,t,X0,t0) and Wt(Xs,t,X0,t0)  are the 
refraction coefficients for compression and shear 
waves, respectively. Integrating over the whole source 
to give the impulse response and convolving this with 
the source velocity driving function v(t), we express 
the compression particle velocity components as, 
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      (5) 
Similarly for the shear wave, the particle velocity 
components are given by, 
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      (6) 
III Numerical Calculation 

The surface integrals within Eqns (5) and (6) cannot 
be solved explicitly. Here we give an efficient 
numerical evaluation that makes use of a coordinate 
transformation to divide the source into surface 
elements in a way that exploits symmetry and leads to 
a reduction in iteration times when calculating ray 
paths. 
 
A Coordinate transformation 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2:  Coordinate transformation 

      Referring to  Figure 2, we introduce a new 
cylindrical polar coordinates system (r, φ ,  z’). The 
origin O’ is set at points Xn that give the shortest travel 
time from the source surface to a given point Xs in the 
solid. Such minimum time paths must leave the source 
at normal incidence. Since Xn lies at different 
positions for the compression and shear waves, O’ will 
shift accordingly. The Z’ axis is perpendicular to the 
source surface and for φ = 0, r lies in a direction 
parallel to the projection of OX on the source surface. 
Transformations from the Cartesian system 0XYZ  are 
given by, 
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(10) 

where (r0, φ0, z0
’) are the cylindrical coordinates of 

the source centre.  
 
B Source surface elements 

A general source element is shown in Figure 3 
represented by a point of coordinate (ri,φj,z’) where 
z’ =0. The element is bounded by arcs r = ri+∆r/2 
and r = ri-∆r/2, and radius φ =φj -∆φ /2 and φ =φj -
∆φ /2. The source elements are incremented as, 

, , 1, , ( )i f r jr i r r c t i N φ= ∆ ∆ = ∆ = L
, 2 / , 1, ,j jj N j Nφφ φ φ π= ∆ ∆ = = L  (11) 

where t∆ is a time step, and ( ) ( ) /r j rim jN r rφ φ= ∆ , 

( )rim jr φ  being the distance from O’ to the  source rim 
at angle division φ j In the current work sufficient 
accuracy was obtained by setting Nφ = 180.  
   Note that there is symmetry to the plane φ=0  for the 
contribution from each element of the source, for 
example pairs A and A’. This leads to a reduction in 
overall calculation times. For example, when Xn lies 
on the source diameter, the number of calculations is 
halved.   
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3:  Symmetry in the polar coordinate system  

C Propagating path 
Considering the ray path from source element 

(ri,φj,0) in Figure 3, XI must lie between point X0
’ and 

Xs
’, but its position cannot be found analytically. Here, 

we iterate towards a sufficiently accurate solution. We 

first set 1 '
, 0i jX X= and 2 '

,i j IX X= . Set either 
0 0
,i j nX X= , if i = 0 and 0

nX  is between '
IX  and '

0X , 

or set 0 0
, 1,i j i jX X −=  where 0

1,i jX −  is approximation of 

IX  for source element (ri-1,φj,0), if 0
1,i jX −  is between 

'
IX  and '

0X . The error at the current iteration is given 
by 
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the propagation velocity for either the compression or 
the shear wave in the solid. If Err is -tve, 1 0
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Err is +tve, 2 0
, ,i j i jX X= . Set 0 1 2

, , ,i j i j i jX X X= +  again 

and continue until 0.01Err ≤ , then 0
,I i jX X≈ . 

 
D Numerical integral procedure  

When calculating the impulse response, we 
increment time according to 0 ( 1)kt t k t= + − ∆ , 

1, , ,tk N= L  max /s
tN t t= ∆ , where max

st  is the 
maximum travel time from source rim to Xs.  It was 
found that a time increment of 10 ns gave a good 
compromise between accuracy and calculation times. 
Using the propagation path as found in section C 
above and equations (11), (3) and (4), the compression 
and shear contribution of each source element is 
calculated. Summation according to (5) and (6), and 
repeating for each time step gives the overall impulse 
response at a given point in the solid. 
   Note that, of itself, the origin shift in the coordinate 
transformation of A above leads to a reduction in 
calculation times by ensuring that each element in the 
surface integral contributes to the impulse response in 
time sequence. 
 
IV Results  
A Measurement set up 

The measurement set up is shown in Figure 4 and is 
discussed in greater detail elsewhere[7]. A single disc- 
shaped test piece  was used for all of the results given 
here. The test piece was constructed from mild steel 
with density 37800 −= kgmρ , and compression and 
shear wave velocity 15960ms −  and 13210ms − , 
respectively.  
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Measurement set up 

The waveforms at the surface of the test piece were 
measured with the miniature probe supported by a 
specially constructed jig to avoid any variation in 
coupling conditions. It has been shown that to a 
reasonable approximation, such a probe measures the 
normal component of particle velocity in a solid [7].  

The transmitter was a wideband Panametrics 
transducer of diameter 19mm, that gave a short pulse 
approximating to 1 cycle at 2MHz. Its orientation to 
the solid surface and its position in 3 axes could be 
adjusted.  

 
B Normal incidence  

Figure 5 shows measured and calculated results 
made using the new model for axial field-point 
waveforms in steel (metal path 10mm) with the 
transmitting transducer normally coupled at various 
water paths. The results are shown to the same time 
scale, but a different arbitrary, time origin is used for 
each result. The first pulse to arrive labelled PC is due 
to reception of the “plane compression” wave[3] from 
the transducer. The time differences between  PC and 
the pulses labelled EC (“edge compression”[3]) are 
consistent with the reception of a wave from the rim 
of the source, allowing for refraction and taking the 
compression wave velocities in the fluid and solid. 
Similarly, the arrival times of the ES (“edge shear”) 
pulses are consistent with reception of waves from the 
source rim that propagate at the compression wave 
velocity in the fluid and the shear-wave velocity in the 
solid. As in earlier work[3], the origin of the shear 
edge wave is explained as a result of partial mode 
conversion of the compression edge wave.  Since the 
refraction angles decrease as the coupling path 
increases, such mode conversion will also decrease 
with coupling path, an effect that can be seen in the 
results of Figure 5.    

In general there is good agreement between the 
measured and calculated results, justifying the 
assumptions made in developing the model.  

 

Figure 5: Field-point waveforms in steel using various 
water paths. Incident angle: normal.   

 
C Oblique incidence 

As can be seen in the results of Figure 6, at oblique 
incidence the incident compression plane wave can 
partially mode convert to give a shear plane wave in 
the solid. According to the present model, for oblique 
incidence at less than the 1st critical angle, the field in 
a solid has four components:  a compression plane 
(PC) and edge wave (EC) and a shear plane (PS) and 
edge wave(ES).  
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The results given in Figure 6 are for four positions 
of the transmitting transducer along the  X axis ( see 
Figure 1). Position (a) gives a maximum amplitude 
for the compression edge wave as received by the 
miniature probe: similarly (d) gives a maximum for 
the shear edge wave. We define these positions as the 
“focus” for each edge wave. Since at oblique 
incidence we have an elliptic beam in the solid, the 
foci do not in general correspond with the axes of the 
corresponding plane wave beams – unlike the 
situation at normal incidence, where as a result of 
circular symmetry, the edge wave pulses are 
maximum on the axis.   At the focus of the 
compression edge wave (a), the shear plane wave is 
smaller than in (d) since in (a) the shear plane wave 
beam is just beginning to “miss” the receiving probe. 
Results (b) and (c) show the plane- and edge-wave 
components at positions in between the two foci. 
 
  

 

Figure 6: Field-point waveforms at the same range in steel 
but at different field-point positions. Water path: 6mm; 
incident angle: 12o .   
 

 
Figure 7: Field-point waveforms at various angles of 
incidence. Water path: 6mm (from centre of transducer).  

 
Figure 7 shows how the field-point waveforms 

change with incident angle from 0o to 12o. In each 
case, the measurements were made at the focus of the 
shear edge wave. As we would anticipate from well-
known refraction coefficients, we see an increase in 
amplitude of the shear plane wave with incident angle.  

The change in amplitude with angle of the 
(“focussed”) shear-edge wave pulse is due to a 
combination of refraction and the directivity of the 
incident compression edge wave. 
 
V Conclusion 

Experimental measurements of field-point 
waveforms in steel show that the field radiated into a 
solid by a water-coupled, compression-wave 
transducer can be explained in terms of four main 
components: compression plane- and edge-waves, and 
shear plane- and edge-waves. The measurements were 
made at the steel surface using a miniature 
piezoelectric probe that approximately responds to the 
normal component of particle velocity.   

Corresponding  numerical calculations - made using 
a model that assumes the rays from each element of 
the source are refracted and mode converted according 
to well-known refraction coefficients for plane waves 
- agree well the measurements. The model makes use 
of coordinate transformations to exploit symmetry and 
reduce calculation times. 

The plane and edge-wave description of the pulsed 
field is useful in describing the complicated structure 
of the field in solids. Note that even at incident angles 
between the 1st and 2nd critical angles, where only 
shear waves exist in the solid, the field still has a 
plane- and edge-wave structure. 
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