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Abstract 
   Additional components in elastic wave field 
displacement are those which are zero for the case of 
propagation of a homogeneoeus-plane-wave. For P-
waves in a homogeneous isotropic medium additional 
components are transverse components of the 
displacement.     
   We analyze simple exact non-nime-harmonic 
solutions of elastodynamics equations in order to find 
those which describe real wave fields more 
adequately. We find that theory of inhomogeneous 
plane waves and an alternative theory of elastic waves 
with a linear transverse structure give qualitatively 
different results. 
 
Introduction 
   Interest in a detailed description of polarization in 
propagating elastic waves was motivated by 
possibilities of direct recording of three components 
of the displacement wave field. For example, in 
seismic exploration measurements in boreholes allow 
(after certain processing) complete description of the 
displacement vector. It was observed, i. e. [1], that the 
particle movement in P-waves is never rectilinear, and 
thus differs from predictions of a simple theory of 
homogeneous plane waves. We analyze simple 
solutions of elastodynamic equations in order to find 
those which describe real wave fields more 
adequately. We find that  an alternative theory of 
propagation of elastic waves with a transverse 
structure give qualitatively different results. 
    The term ''additional components'' was introduced 
by people who developed an asymptotic ray approach, 
e. g. [2,3,4]. In case of isotropic elastic media, this 
meant, when considering e.g. P-waves its transverse 
components which necessarily appear in high-
frequency perturbation theory when considering 
higher-order terms. The asymptotic theory, confirmed 
later by numerics, e.g. [5,6] predicted that the wave 
form in the additional component is the integral of the 
wave form in the component. We observe that this 
prediction fails for the usual inhomogeneous plane 
waves, e.g. [7]. We numerically simulate two kinds of 
non-trivial elastic wave fields which are both exact 
solutions of the elastodynamic equations.  Both have 
non-zero additional components, but their wave forms 
are crucially different. In the first case it is the 
integral, and in the second it is the Hilbert transform 
of the wave form in the ``normal'' component. 

 
Mathematical background 
   We describe the physical elastic displacement vector 
in homogeneous isotropic medium by  

( )= ℜU u  , 
with ℜ  standing for the real part, where 

( , , , )x y z t=u u  is a complex displacement vector 
obeying the standard elastodynamic equation 

2
2( 2 )graddiv rotrot 0   tl m m r ∂+ − − =∂
uu u ,        (1) 

with λ  and µ  the Lamé parameters and ρ  the 
volume density, all constants. 
      Here we consider only P-waves, which can be 
represented in terms of the scalar potential 
Φ = ( , , , )x y z tΦ as follows 

  

grad = x y zx y z
∂ Φ ∂ Φ ∂Φ

= Φ + +
∂ ∂ ∂

u e e e .              (2) 

Here xe , ye and ze are unit coordinate vectors.   
Evidently (1) and (2) imply the wave equation for the 
potential 
  

2 2 2 2
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1
0

x y z c t
∂ Φ ∂ Φ ∂ Φ ∂ Φ

+ + − =
∂ ∂ ∂ ∂

,  (3) 

where ( 2 )/c λ µ ρ= +  is the velocity of  bulk P-
waves.  We consider further potentials of three types, 
starting with the best-known one. 
 
Model 1. Homogeneous plane wave 
    Taking a solution of (1) in the form of 

( / )f t x cΦ = −  describing wave propagation in the 
direction of the x-axis, with f an arbitrary real 
function of a real variable, we get 
  

   

( / )
( / ) ,x x

f t x c
F t x c

x
∂ −

= = −
∂

U e e                  (4) 

where           
( ) (1/ ) ( ) /F c fτ τ τ= − ∂ ∂ .                                       (5)                                               

This solution describes rectilinear wave motion along 

xe , which is the``normal'' component of the 
displacement, and no additional component is present. 
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Model 2. Homogeneous plane wave with a transverse 
structure 
   Under the same assumption about f, the potential 

 (1 ) ( / )                            Ay f t x cΦ = + −        (6)           
where A is an arbitrary constant that we assume real. 
As immediately seen, the expression (6) satisfies  (3), 
and thus the vector 

/

(1 ) ( / ) ( )
t x c

x yAy F t x c Ac F dτ τ
−

= + − − ∫U e e     (7) 

is an elastic wave displacement. The second term in 
(7) describes the anomalous or additional component, 
associated with the non-constancy of the wave field 
amplitude distribution along the wave front.        
   Expressions of the form (7) are typical for the ray 
theory involving higher-order terms [2,3,4,6]. 
 
Model 3. Inhomogeneous plane wave 
   Non-stationary plane-wave solution is described by 
the complex potential 

( )
c x

f t i y
c c c

α
Φ = − −

%
% %

,                                    (8)   

where 0 c c< <%  is the velocity of the wave, α = 
2 21 /c c− %  characterizes damping along the y-axis, 

and f  is an arbitrary function of a complex variable.  
   The physical displacement is 

(grad ) ( ) ( )x yF iFα= ℜ Φ = ℜ + ℜ =U e e  

( ) ( )x yF Fαℜ − ℑe e ,                                           (9) 
with ℑ  standing for the imaginary part and F  still 
defined by (5) but the derivative with respect to the 
complex variable is meant. As known, real and 
imaginary parts of the function are connected under 
some natural assumptions, see, e. g. [8],  by the 
Hilbert transform. Then 

F( ) H[F]( )x yt tα= −U e e ,                                (10) 
where  

F( ) ( ),
x

t F t i y
c c

α
= − −

% %
                                    (11) 

and the Hilbert transform H[F]  of the function F  is 
defined as follows 

1 ( )
H[F]( ) p.v.

F
t d

t
τ

τ
π τ

+∞

−∞

=
−∫ ,                          (12) 

with p.v.  denoting the principal value of the integral.   
   In contrast to the previous case, the time-
dependence of displacement in the additional 
component is not the integral but the Hilbert transform 
of that in the `normal’ component. 
 
 
 
 
 

Numerical simulation    
   Numerical modeling shows that wave forms in 
additional components described by models 2 and 
3 with the same “normal” component may look 
very differently, see figures 1, 2 and 3.  
 

 
Figure 1: displacements for the direction of 

propagation (x-axis) for the models 2 and 3  
and for two values of t 

 

 
Figure 2: displacements for the direction of 
propagation for the models 2 and 3, y = 2, t=0 

 

 
Figure 3: additional components of displacements 

 for the models 2 and 3, x=0, y = 2 
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Conclusion 
   We observe that two natural models of the 
elastic P-wave field displacement demonstrate 
very different qualitative properties. At the 
moment we do not see any bridge between these 
models. 
   Similar results can be found for S-waves in 
isotropic media, and generalized to the case of 
general anisotropy. 
   The problem of  adequateness of different 
mathematical models to physical realities remains 
open for both  theoretical and experimental 
investigation.  
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