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Abstract
A method to calculate waves radiated by a nanosecond
laser source through or at the surface of an anisotropic
plate is discussed. Characteristic features of wave
propagation in anisotropic media, such as internal
diffraction are well represented. In addition, an
identification method is used to measure the stiffness
tensor coefficients of materials showing an
orthorhombic symmetry.
Measurement of thinner layers anisotropic properties
at micrometric scales with bulk ultrasonic waves
requires that higher ultrasonic frequencies be excited.
This can be achieved using shorter laser pulses,
typically in the picosecond range. From the theoretical
point of view, representation of the waves generated
by such short laser pulses requires that optical and
thermal material properties be considered in the
calculation scheme. Calculation results of waves
generated in anisotropic media are presented.
Stiffnesses measurement at microscopic scale is
discussed from numerical results.

Introduction
Laser generation of ultrasound is recognized to be a
powerful tool to determine material properties without
any contact to the sample [1]. However measurement
for thin anisotropic layer requires that very high
frequencies be generated. Such acoustic waves were
generated with 100 fs laser pulse duration [2] and they
were used to measure acoustic resonances in samples
which thickness was of few nanometers only [3]. The
source directivity is such that longitudinal waves are
generated with a wave vector normal to the sample
surface. At a mesoscopic scale, using ps laser pulses,
the pupil function of the source is broadened, showing
promises for the measurement of both quasi-
longitudinal and quasi-shear waves.
In this paper, a model is presented to calculate the
waveforms generated in any direction through an
anisotropic plate. The optical penetration as well as the
thermal diffusion are considered. Waveforms are
calculated for a sample thickness as thin as 5 µm
taking into account the source width (1µm) and time
duration (10ps).

Waveforms calculation for long (ns) laser pulses in
anisotropic media

Let us first consider a silicon plate of millimetric
thickness (e = 5 mm). The surfaces of the plate have
been cut in the plane (2,2,0) of the crystal. The normal
to the interfaces of the plate, denoted axis   

† 

X1, is along
the crystallographic direction [1,1,0], while directions

X2 and X3 belonging to the sample surface, correspond
to crystallographic axes [-1,1,0] and [0,0,1],
respectively. Despite the cubic symmetry of silicon,
the particular orientation of the sample cut makes the
wave propagation equations in the sample axes similar
to those considered when propagation occurs in a
material showing an orthorhombic symmetry. The
components of the stiffness tensor in the sample axes
can be calculated from those given by literature in the
crystal axes for silicon. They are given in Tab. 1. The

line-source lies in the X3 direction thus the plane (X1,

X2) is investigated, Fig. 1. In such a principal plane of
an anisotropic material, three waves may be generated.
However, since the source is a line, the shear mode

which polarization is along axis X3 is not generated for
this line source direction.
We consider in this section a laser burst duration of 20
ns, and the ultrasounds are detected on the opposite
face of the plate. The direction of observation is then
defined by angle q  between the source-receiver
direction and the plate normal, Fig. 1. The particular
value q =0° is related with the epicentre position.
The acoustic wave equation is written as:

      
— C* :—u( ) - r

∂2u

∂t2
= l.—T  , (1)

where u and C* stand for the displacement vector and
stiffness tensor, respectively. The tensor has complex
components, whose imaginary parts are functions of
the angular frequency w.

 
Figure 1: geometry
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Any viscoelastic rheology could thus be introduced in
this modelling of the displacements. However, these
imaginary parts are considered null for silicon.
Neglecting thermal phenomenon, the right hand side
of Eq. (1) is zero.
Owing to the symmetry imposed by the source shape,

the problem is invariant along direction X3. Each

component ui of the displacement vector depends on
two space variables x1, x2 and on time t. The two
dimension Fourier transform of the displacement field
over x2 coordinate and time t is considered, and it is

noted Ui. Applying this transformation to Eq. (1)
yields a set (S) of linear partial derivative equations
with respect to the depth x1 only. Classically the
solution is sought in terms of exponential functions:

Ui = ˜ U i exp - jk1
*x1( ) , (2)

where k1
*  is the complex component in direction X1 of

the wave vector. Its imaginary part represents the

exponential decay of the amplitude in direction X1.
Using Eq. (2), the set of equations (S) provides a linear
system which characteristic equation is a second order
polynomial form in k1

*  squared. For a given k2, two

values of k1
*  squared can be calculated, corresponding

to the propagation of modes whose polarizations are
quasi-longitudinal, and quasi-transverse.
For each of the modes, the amplitudes ˜ U i  are
calculated by expressing the boundary conditions. At
x1= -h the plate is submitted to a line loading F. Since
the thermoelastic regime is considered a dipole force
parallel to the interface with a step-like time
dependency is considered [4]. Therefore the
components of F  are such that F1=0 and F2≠0. The
boundary conditions at x1= -h are then expressed as
follows:

    
C1 jkl

∂uk

∂xl
= Fj ¢ d x2( )H t( )  for  j=1..2, (3)

where d' stands for the derivative of the delta function
and H denotes Heaviside step function. Free boundary
conditions are considered at x1= h, such that:

    
C1 jkl

∂uk

∂xl
= 0  for  j=1..2, (4)

These four equations yield a non-homogeneous linear
system for each mode. The unknowns are the
components ˜ U i  of the two counter-propagating waves
in the plate. The use of even and odd solutions
uncouples this system to give two distinct systems of
equations [5]. Notice that the finally considered

solutions can be either the displacement at the
interface x1= h, if the transmission response is sought,
or the displacement at the interface x1= -h , if the
interface waves are inspected.
When dealing with an elastic medium, the integrand
shows discontinuities for particular k2 values. They
correspond to poles associated with the zeroes of the
dispersion equation that describe the guided waves in
the plate. The integration thus appears to be not
consistent with the Fourier transformation. For an
accurate calculation [6,7] of the displacement field, it
should be carried out in the complex plane of the
variable k2. Since this method includes a change of
variable [6] in which time interferes, it is not
consistent with the frequency dependence involved by
the propagation in a viscoelastic medium. A numerical
integration method should therefore be applied. For
each value of the angular frequency w, the integral on
the real axis of the variable k2 is calculated by means
of the method suggested by Weaver et al.[5]. In this
scheme, the Fourier transform is generalized by
replacing w by a complex variable w-jd with a small,
constant and imaginary part d . The interest of the
method is twice: i) it preserves the applicability of the
fast Fourier transform algorithms for the final
inversion and ii) the integrand is a non-singular
function that may now be integrated numerically.
A signal calculated for an angle of observation q=35°
is shown in Fig. 2. For this off-epicentre detection
position, the quasi-longitudinal (L) mode and the
multiple arrivals of the quasi-transverse (T) mode are
observed. Notice the wave with high amplitude
denoted (D) in Fig. 2. It results from internal
diffraction due to the folded shape of the ray curve in
this anisotropic material [8].
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Figure 2: normal displacement for q=35°  and e = 5
mm. The source is modelled as a dipole force at the

front interface.
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C11 = 194.36 GPa r=2.33Kg.dm-3

C22 = 194.36 GPa b=0.15mm-1

C12 = 35.24 GPa R = 0.33
C66 = 50.90 GPa kij=150W.m-1.K-1

Table 1: physical properties of the silicon samples

Our calculations allow us to accurately represent this
phenomenon. Later arrivals are also noticeable in
Fig. 2 that correspond to waves propagating back and
forth in the plate and reflected twice.

Measurement of stiffness coefficients
Firstly, several signals are calculated for various
source to receiver directions starting at epicentre.
These directions are such as they would have been
obtained if either the line source or the point receiver
had been scanned in a direction normal to the line with

a constant step dx . Let 
  
si t( )( )

N
 be the set of N

calculated signals, i = 0, .., N-1. Second, the signals are
shifted in time in a manner such that the waveforms
calculated at two any neighbouring positions are
delayed of a small constant d t. Finally, the waveforms
are summed, taking into account the symmetry of the
time shift of the sources, with respect to the epicenter.
It provides the signal s(t) such that

  
s t( ) = S

i= -N

i=N

si t + dt( ) , (5)

For suitable space sampling conditions, the obtained
signal is similar to what would have been recorded if a
plane wave had propagated through the material in the
direction defined by angle j.
Applying Snell-Descartes law for an acoustic source
travelling along the surface with slowness dt/dx, one
gets access to the phase velocities for various phase
directions. The stiffness coefficients can then be
recovered by a numerical process starting with a set of
phase velocities calculated for various phase directions
[1].

Waveforms calculation for short (ps) laser pulses in
anisotropic media
We now consider a sample which thickness e is 5µm,
and physical properties are given in Table 1. When
picosecond laser pulses are considered, the optical
penetration depth can no longer be neglected and
neither does the thermal diffusion length. The thermo-
elastic coupling is no longer neglected in Eq. (1). It is
introduced in our calculation scheme by solving
Fourier diffusion equation

    
rCp

∂T
∂t

= k i j
∂ 2T

∂x i∂x j
+ Q xi, t( ) , (6)

where k ij are the components of the thermal
conductivity tensor, whereas Q denotes the source:

    
Q xi, t( ) = b 1 - R( ) I0d x2( )d t( )exp -bx1( ) , (7)

where b stands for the absorption coefficient, R is the
reflection coefficient and I0 denotes the incident light
energy. The coupled equations are solved in the (k2,w)
Fourier domain with an appeal to the heat free and
stress free boundary conditions [9].
For this 5µm thick sample, signals were calculated for
an angle of observation q=35°. The signal calculated
taking into account thermal diffusion and optical
penetration depth is plotted in Fig. 3 along with the
signal calculated when a dipole source on the surface
is considered, Eq. (3). For this off-epicentre detection
position, the quasi-longitudinal (L) mode, the quasi-
transverse (T) mode and the wave resulting of internal
diffraction (D) are still clearly observed. When optical
penetration is considered, thermal sources of
expansion are on a plane normal to the plate interface
and containing the laser line source. Since the optical
penetration depth (1/b) is higher than the sample
thickness, an additional wave denoted (Ls), is
observed in Fig. 3, before the (L) wave.
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Figure 3: normal displacement for   

† 

q = 35° and e = 5
µm. Dashed line was calculated for a dipole force at
the front interface. Solid line was calculated taking
into account both optical penetration and thermal

diffusion.
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Figure 4: normal displacement for q=35° and e = 5
µm. Dashed line was calculated taking into account

both optical penetration and thermal diffusion. Source
width and time duration were also accounted for to

plot the solid curve.

It corresponds to a longitudinal skimming wave,
propagating from the epicentre to the detection point.
In addition to the correct representation of the
generation mechanism, one must also take into
account the source characteristics in time and space.
To this aim, the delta functions d(x2) and d (t) in
Eq. (7) are changed in Gauss functions which width at
mid height equal the pulse width and pulse duration,
respectively. The obtained signal is shown in solid
lines in Fig. 4 with the signal already discussed in Fig.
3. When the laser beam properties are considered, the
signal is smoothed owing to the convolutions with
Gauss functions in space and time domain. However,
for realistic 1µm width and 10 ps duration, the shear
wave (T) is still easily discernable in the waveform, as
well as the wave resulting of internal diffraction (D),
which is a signature of anisotropy.

Conclusion
In this paper a model is considered to calculate
acoustic waves generated by short laser pulses (ps) for
which optical penetration and thermal diffusion can no
longer be neglected. Moreover, pulse properties such
as time duration and width are also considered. A
typical waveform for a point detection located on the
opposite side of a 5µm thick plate at an off-epicentre
position was calculated. A laser pulse of 10 ps is
considered and a source width of 1µm is assumed. The
calculation shows that the shear wave is still clearly
discernable. This result shows promises for the non-
destructive evaluation of thin films.
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