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Abstract

This study presents a method to calculate the
response of an elastic structure, made of a layer
overlaying a half-space, loaded at its free surface
by a dynamic normal point force. Both welded
and frictionless sliding conditions at the interface
are considered. The work is conducted in the con-
text of characterizing the transmission of waves in
the human lung (half-space) after non-penetrating
impact on the thoracic wall (layer). Equations
of the boundary-value problem are manipulated
in a Laplace-Fourier transform domain and the
Cagniard-de Hoop method for 3D problems is used
to invert the transforms.
approximation and has a form identical to that ob-
tained by intuition with the generalized ray theory.
Results illustrate the method. We analyse: 1) the
influence of the contact condition on the propaga-
tion of body waves and head waves; 2) the response
to impact loadings of durations up to 30 times the
transit time of P-waves in the layer.

The solution is free of

Introduction

In many cases, the Cagniard-de Hoop (CdH)
method is the only method able to yield exact
Green’s functions for problems of transient wave
propagation in elastic layered media. See [1, 2] for
reviews of the method.

The work presented in this paper may be viewed
as an illustration of the use of the CdH method in
a simple layered medium made of a layer resting on
a half-space.

The CdH method is associated with the gener-
alized ray theory. A solution obtained within the
framework of this theory consists in a sum of terms,
called “generalized rays” (GR). Each GR represents
the contribution of a specific wave to the response:
body waves, surface waves and head waves, with
longitudinal or transverse polarization. As a con-
sequence, the analytic expression of the response at
a given receiver includes more and more rays when
the observation time increases.

In the general case, evaluation of each GR’s con-
tribution requires numerical calculations (because
analytic solutions are not explicit); this is why nu-
merical results with the GR, theory have only been
obtained for short time responses, that is, when
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only a few number of waves have arrived to a given
receiver.

In the present study, two original aspects of the
GR/CdH method are addressed: 1) for the analy-
sis of the role of the interface condition (welded vs.
frictionless sliding) in the response pattern; 2) for
the calculation of long time responses, which ne-
cessitate the calculation of millions of rays. Some
details on the adaptations of the standard method
have been presented in references [3, 4, 5, 6].

Formulation of the problem

Point force
X1
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Half-space
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Figure 1: Model configuration and coordinate system.

The structure (Fig. 1) consists of a layer of in-
finite extent (medium 1) with thickness h over-
laying a half-space (medium 2). The layer has a
free surface (1), and an interface (Il) with the half-
space. At surface 11, the contact condition is, alter-
natively, perfect bonding (welded contact) or fric-
tionless sliding. Both media are linearly elastic,
homogeneous and isotropic; the Lamé parameters
are denoted by A and p, and the mass density is
denoted by p (see Tab.1). Superscripts (1) and (2)
refer to media 1 and 2, respectively (superscripts
will be omitted in equations valid for both media).

Table 1: Material parameters and waves speeds in media 1
and 2.

Al H1 P1 €s;1 cpy
(MPa) (MPa) (kg.m_s) (m.s_l) (m.s_l)
3 285 821 1750 685 1678

Az H2 P2 €S2 Cp2

0.4 0.26 600 21 40

The position is specified through the coordinates
(1, x2,23) with respect to a Cartesian reference
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frame R(O;x1,X2,x3) where O is the origin and
(x1,X2,X3) is an orthonormal basis for the space;
the xsz-axis is taken perpendicular to surfaces I
and II. The free surface of the layer coincides with
plane z3 = 0 and the structure is localized in the
half-space z3 > 0. Time is denoted by t. The
elastic response is characterized in R by the com-
ponents o;; of the Cauchy stress tensor and by the
components v; of the particle velocity v.

Letters P and S are used for quantities rela-
tive to P- and S-waves. Wave speeds are defined
by cp = v/(A+2u)/p and cs = \/p/p, and waves
slownesses by sps = 1/cpg. At O, a dynamic point
force of direction x3 generates both P- and S-waves
with vertical polarization.
t<0.

With negligible body forces, the equation of mo-
tion is

Media are at rest for

8]02] - Patvi =0, 1,7=1,2,3, (D

where 0; and 0; denote, respectively, partial deriva-
tives with respect to x; and to time, J;; is the Kro-
necker symbol and Einstein’s summation conven-
tion is used. Hooke’s constitutive law is introduced
as

87502']‘ — A(Sij(qu@qvp — ,u(aﬂjj + 8]‘?]2') =0. (2)
At surface I, the free surface conditions and the def-
inition of loading are associated with the equations

0-13($17 T2, 07t) - U?S(xlv Z2, 07 t)

=0 3
0-33($17 Z2, 07 t) - Uo¢(t)5($1)5($2)7

where ¢(t) is the loading history, o¢ is the loading
strength (oo = 1 in the computations) and ¢ is the
Dirac function.

At surface 11, frictionless sliding contact condi-
tions are described by

[vs] =0, [o33] =0,
U%)($1,$2,h,t) = U%)($1,$2,h,t) =

0, 4)
2 2

O'§3)($17 xo,h,t) = 0'53)($17 x9,h,t) =0,

where [.] denotes the jump of a quantity across the

interface. And the welded contact conditions are

[o15] = [o23] = [o33] = 0;
)

Solution in the transform domain

The above equations are subjected to a Laplace
transform with respect to ¢ and a two-dimensional
Fourier transform with respect to z; and z9; p

[v1] = [we] = [ws] = 0.
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and k; (¢ = 1,2) are the Laplace and Fourier pa-
rameters, respectively.
transform domain counterparts of (1) and (2) of
stresses 011, 012 and 99, six transform domain un-
known quantities remain for representing the wave
field in each medium; they are arranged into vector
B = (?717 ?727 ?~]37 —5’137 —5’237 —5’33)T. In both media,
the differential equation for b takes the form [2]

After elimination in the

dsb = —pAb, (6)

where A is a 6 by 6 matrix. Upon introducing &
as b = Dw, where each column of matrix D is an
eigenvector of matrix A, (6) becomes

D3W = —pAW, Q)

where A is a diagonal matrix whose non-zero terms
A; are the eigenvalues of A: Aq

_857 Ay =
—s5, A3 = —s5, Moo= 55, A5 = s5, Ag = s,
where 55’5 = (sL ¢ — k¥ — k3)'/2. Tn order to keep
the square roots7single valued in the derivations,
55’5 are chosen so that Re[s?’s] > 0.

The six solutions of (7) have the structure of in-

homogeneous plane waves propagating in direction

X3

®)

Solving the elastodynamics problem in the trans-
form domain consists in determining b™M) via w1
in the layer and b2 via %@ in the half-space; the
interface conditions are used to couple w1 and
w(2). After some algebraic manipulations and by
using an expansion in power series [7, 5],

wil) = Z Rks7
k=0

where w(!) contains six amplitudes of waves in the

Wy, = Wy, X exXp(—pA,a3).

©)

transform domain. (See [7] for a discussion of the
convergence of the sum in (9).) The components
of s are amplitudes of the waves generated by the
point force, and R is found to be a matrix which
contains the reflection coefficients of plane waves
at surfaces I and II. Eventually, upon developing
(9), the solution is identified as a sum of general-
ized ray contributions. The counterpart of (9) in
the space-time domain is a finite sum in a bounded
observation time window. The solution w(2) in the
half-space is obtained from the solution %) in the
layer and has the same form.

Finally, in the half-space, the response is a sum
of terms (each is the contribution of a single GR),
denoted [IN)EZ)]: b = Z[i)gz)], where N is the num-
ber of GRs to take in]tvo account in the response.



The form of one of the contribution is

B = DX 11 T Bim 50 expl-py(s)],  (10)

where g¢(s) = Zs?sﬂh + AXD(z3 — ), and
the meaning of each quantity is indicated below.

(2) .. —
Dm polarization of the ray at the receiver;

Trr transmission coefficient at surface 1I;

H Ry, product of reflection coeflicients at surfaces I
and II;

Sy amplitude coefficient at the source level;

P Laplace parameter;

g(S) “path” of the ray.

The expressions of Rjjr and T7; depend on the
contact condition considered at the interface.

Solutions in the time-space domain

Each GR contribution in the space-time do-
main is obtained by applying the Cagniard-de Hoop
method. The principle of Cagniard method is
to make one inverse Fourier transform and one
Laplace transform play against each other so that
they mutually annihilate themselves: the inverse
Fourier transform of a GR contribution in the
transform domain is manipulated; new contours of
integration are defined. Together with the body
wave associated with the GR under consideration,
in some cases, an integration along branch cuts
gives rise in the physical domain to head wave con-
Exact
solutions for the wave field are obtained; however

tributions and residues to interface waves.

they are rarely explicit for 3D problems.

While the above manipulations in the trans-
form domain are indifferent to the location of the
receiver, the form of the space-time domain so-
lution strongly depends on this location. We do
not give the technical detail in this paper, nor the
expression of the solution, they can be found in
references [2, 4, 6].

Results

The present work is part of a project which pur-
pose is to characterize the transmission of energy
in the lung following a non-penetrating impact on
human thorax (lung is a biological tissue which has
little resistance to dynamic loadings [8]).

The model shown in Fig. 1 is used to charac-
terize the transmission of elastic waves between the
thoracic wall (layer) and the lung (half-space). Ma-
terial parameters are such that the layer is “hard”
in comparison with the substrate—they are said to
be “weakly-coupled”. The thickness h of the layer
is set to 2 cm.
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A computer program based on the Cagniard-
de Hoop method has been developed [5, 6]. The
calculation of the response at a receiver in the half-
space requires: i) to number all the rays arriving in
a given time window and determine their expres-
sions; ii) to evaluate numerically each ray contri-
bution.

In the following, two kinds of numerical results
are presented: 1) the response in the half-space due
to the waves directly transmitted at the interface
(those waves that have not undergone any reflection
in the layer)—useful for the characterization of the
role of the interface; 2) the response in the half-
space, on the axis of symmetry, for various loading
durations T—useful to elucidate the influence of
the impact duration on the response.

Results 1) — Fig. 2 shows the response in terms
of displacement u; at point 1 = 23 = 0.025 m in
the half-space for the two different contact condi-
tions and for ¢(t) = H(t), where H(t) is the Heavi-
side step function. Six waves arrive at the receiver:
four body waves (PP, SP, PS and SS, in order
of their arrival time) and two head waves (associ-
ated with GRs SP and 55). The bottom box in
each figure shows the isolated contribution of head
waves; the top figures are the total response (head
waves+body waves).

x10”

u,(9(8)

4 5 3] 7 8 9
x107

Figure 2: Response u(¢) at point 1 = z3 = 0.025 m for
welded (thin line) and frictionless (thick line) contact; the
head waves contributions are shown in the bottom figure.

It is seen on Fig. 2 that, uy(t) is very sensitive to
the contact condition, and that the head wave con-
tribution is very weak in the frictionless case as
compared to the welded case. Other calculations
have shown that ray SP and SS are much more
influenced by the contact condition than PP and
S P, and that this phenomenon is specific to weak
coupling.

Results 2) — The response pattern of the struc-
ture is expected to be dependent on the duration
T of the applied force with respect to the transit
time t. = h X sp of P-waves to cross the layer
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thickness. The time history ¢(t) is taken to be a
four-point optimum Blackman window function [2]
of unit amplitude. The response in the half-space is
given in terms of a3, for both contact conditions,
at a receiver placed on the xs-axis at 5 mm from
the interface.

60 h 1 1 1 1 1 1 1 1
30 4o 150 160 170 180 10 20 20 20 230
time (us)

Figure 3: Stress o33(t) for a receiver in the half-space at
5 mm from the interface for welded contact. (—) impulse
duration T=5 us; (- - -) T=11.919 us (equal to the transit
time in the layer).

150 200 250 300 350 400 450
time (s,

Figure 4: Stress 033(t) at a receiver in the half-space at
5 mm from the interface for impulse durations 7T'=100 us
and T=200 us. (—) welded contact; (- - -) sliding contact.

Fig. 3 shows responses to “short” pulses, i.e.,
of duration about or less than t.; in these cases,
responses obtained with sliding or welded contact
were indistinguishable; the arrival times of the
waves multiply reflected at the surfaces of the layer
are manifest.

Fig. 4 shows responses to “long” pulses; in these
cases, slight differences due to the contact condi-
tions are observed; for loading durations of more
than 10xt., the wave phenomena observed in Fig. 3
are replaced by vibrations of small amplitudes. For
the longest loading duration, the response has al-
most the shape of the input pulse and vibrations
disappears; the limit response for long duration
loading matches the response of a plate (with the
assumptions of the classical theory of plates).

922

Conclusions

Results presented in this paper illustrate the use
of the exact 3D generalized ray/Cagniard-de Hoop
method to investigate the transmission of transient
waves within a substrate. The method proves to
be a good candidate to test the influence of “ideal”
contact conditions—welded contact or frictionless
sliding. While the method is known to be efficient
to obtain exact responses to short pulses, the re-
sults presented demonstrate that exact responses
to long pulses can also be obtained (these calcula-
tions required the computation of millions of rays
and were possible thanks to the low computational
cost of the rays on the axis of symmetry). When
it comes to modelling the response of structures in
cases where nor high nor low frequencies approx-
imations are valid, the fruits of the method may
be worth the effort required to implement it, as an
alternative to purely numerical methods.
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