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Abstract 
   The acoustic field of a homogeneous and isotropic 
cylinder generated by a laser point source in either ablation 
or thermoelastic regime is obtained theoretically. A three-
dimensional Fourier transform is used to calculate the 
acoustic displacement at the cylinder surface. Experimental 
waveforms were measured and analyzed for either regime. 
Experimental and theoretical normal displacements under 
thermoelastic regime are compared for aluminum cylinders. 
Very good agreements are observed in the time, shape and 
relative amplitude (i) of the cylindrical Rayleigh waves 
with different roundtrips, and (ii) of the various longitudinal 
and transverse bulk waves propagating through the cylinder 
or reflected at the free circular surface.  
 
Introduction 
   There is an increasing demand of nondestructively 
evaluating cylindrical parts. Understanding the wave 
propagation in a cylinder is a necessary step before 
considering any possible application. Moreover, a cylinder 
with its unique geometry is a basic target for the acoustic 
wave propagation research.  
   Surface acoustic wave propagating on an isotropic and 
homogenous cylinder was studied in 1967 by Viktorov[1]. 
Higher Rayleigh-type waves were termed as “Whispering-
gallery modes” by Ubell in 1973[2]. Due to the coupling 
difficulty of conventional piezoelectric transducers, few 
experimental reports on the wave propagation for a curved 
medium had been published until the development of the 
laser ultrasonic technique[3], in which ultrasonic waves are 
both generated and detected by lasers. With the remarkable 
features of non-contact, high spacious and temporal 
resolutions introduced by this technique, various studies on 
materials of curved surfaces have been carried out. As an 
example, Rayleigh wave propagating on a sphere was 
observed experimentally in 1988[4]. The finite element 
method has been used to predict the bulk and surface wave 
propagations when laser beam was focused by a cylindrical 
lens[5].  
   Very recently, authors have published a model[6] to 
predict the bulk and surface wave propagations in a 
transversely isotropic cylinder under either ablation or 
thermoelastic generation regime. The laser pulse was 
focused by a cylindrical lens, and the laser was represented 
by a transient line source. But the model can only predict 
the wave propagation within the isotropic plane 
perpendicular to the z axis, and the propagation along the z 
axis is still not studied. In this paper, a theoretical solution 
is presented to predict the acoustic field generated by a 
laser point source in either ablation or thermoelastic regime 
for a homogenous and isotropic cylinder. The wave 
propagation along the z axis is studied. Calculated 
waveforms of the normal displacement component are 
compared with experimental signals measured by the laser 
ultrasonic technique. 

Statement of the problem 
   Consider a homogenous and isotropic cylinder of infinite 
length, radius a, and density ρ, with its axis of symmetry 
coinciding with the z-axis of its cylindrical coordinates (r, θ, 
z). Let λ and µ denote the two independent elastic constants. 
The components of the displacement vector depend on 
three spatial variables r, θ , z and on time t. These 
components, denoted as ur, uθ, and uz can be written as[7]: 
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where the three scalar potentials ϕ, ψ,  and χ are 
governed by the waves motion equations 
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and by either of the following boundary conditions. 
For a source at position θ=0°, components σ rr , σ rθ , 
and σ rz  of the stress tensor at any point of the surface 
are determined by either 

σ rr r= a = −F0δ(t)δ(z) δ(θ − 2nπ )
n=−∞

+∞

∑
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for the ablation generation[8], or 
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for the thermoelastic generation[9]. In Eqs. (3) and (4), 
F0 is a certain loading in N⋅µs⋅m-2 related to the laser 
pulse, and n stands for the number of clockwise (n>0) 
or anticlockwise (n<0) roundtrips of the generated 
acoustic waves. Here a delta function of time δ(t)  and 
a Heaviside step function of time h(t)  are used for the 
ablation and thermoelastic generations, respectively; 

′ δ (θ − 2nπ)  denotes the derivative of the delta 
function δ(θ − 2nπ) , and ′ δ (z)  denotes the derivative 
of the delta function δ(z) . In Eq. (3), a delta force is 
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postulated in time and space to represent sudden 
normal loading in the ablation regime. A Heaviside 
step function in time is considered in the thermoelastic 
regime [Eq. (4)] since thermal diffusion is neglected. 
Owing to the interface, a dipolar force is considered in 
Eq. (4) for the source shape. 
 
Transformed solutions 
   The three-dimensional Fourier transform of the 
displacement field over the coordinate θ, z, and time t 
is now considered, and it is noted Ui (i=r, θ, or z). On 
noting ν=kθa, where kθ is the component of the wave 
vector k along θ direction, three components of the 
displacement at a given surface position and time are 
then as follows 

ui (a,θ , z, t ) = (2π )−3

−∞

+∞

Ui∫∫∫ (a,ν , k,ω )e− j (νθ + kz −ω t )dνdkd ω
  (5) 

Here k is the component of the wave vector k along z 
direction.  
   Doing so, the wave motion equations and the 
boundary equations can be linearized, providing 
explicit forms for the potentials ϕ, ψ, and χ under 
either generation regime. Normal component of the 
displacement at the boundary are then obtained for 
ablation regime 

Ur(a,ν,k,ω) = − F0a
2µD(ν,k,ω)

A1BL − jkaA2BT − jvA3{ } jν 2nπe
n=−∞

+∞

∑

  (6) 

and for thermoelastic regime 
Ur(a,ν,k,ω) =

F0aH(w)
2µD(ν,k,ω)

T1BL − jkaT2BT − jvT3{ } jν 2nπe
n=−∞
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∑
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where  

 

BL = βa ′ J ν βa( )/Jν βa( )
BT = γa ′ J ν γa( )/Jν γa( )
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A1 = m22m33 − m23m32( )
A2 = m23m31 − m21m33( )
A3 = m21m32 − m22m31( )
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Note that in Eqs. (8) and (11), kL = ω ρ λ + 2µ( ) and 
kT = ω ρ µ  are the scalar wave vector of the 
longitudinal and transverse waves, respectively. In 
Eqs. (6) and (7), D(ν ,k,ω) = det(mij )  is the determinate 

of the matrix mij [Eq. (11)]. Additionally, H(ω)  is the 
Fourier transform of h(t) , and ′ J ν (x)  is the derivative 
of the Bessel function Jν (x) . 
   Now, let us focus on the calculation of the three-
dimensional integral in Eq. (5). When dealing with an 
elastic material, this integrand shows discontinuities 
for a particular set of ω, ν, and k values. They 
correspond to poles associated with the zeros of the 
dispersion equation  

   D(ν ,k,ω) = 0.  (12) 
For k=0, Eq. (12) yields to  

ν 2 − kT
2a2 2( )2

−ν 2 + 1−ν 2( )BLBT

+ kT
2a2 BL + BT( ) 2 = 0

 (13) 

that is identical to Dν in the Eq. (8) of Ref. 6 is null. 
These poles describe the cylindrical Rayleigh waves[1] 
and Whispering Gallery waves[2]. The integration 
thus appears to be not consistent with the Fourier 
transform. A suited numerical integration method 
should, therefore, be applied. For each value of the 
angular frequency ω, the two-dimensional integral on 
the real axes of the variable ν and k is calculated by 
the method suggested by Weaver[10]. In this scheme, 
the Fourier transform is generalized by replacing ω by 
a complex variable ω-jδ with a small, constant and 
imaginary part δ. With this change of variable, Eq. (5) 
becomes 

ui (a,θ , z, t) =
eδt

8π 3

−∞

+∞

Ui∫∫∫ (a,ν ,k,ω − jδ)e− j (νθ + kz −ωt )dνdkd ω

 (10) 

The benefit of this method is twofold: (i) it preserves 
the application of the fast Fourier transform 
algorithms for the final inversion, and (ii) the two-
dimensional integrand is a nonsingular function that 
may now be integrated numerically. To perform the 
numerical integration, the value δ=0.01 rad⋅µs-1 has 
been chosen for the auxiliary parameter in the 
following numerical calculations. 
 
Results 
   The calculated normal displacements are compared 
to the experimental signals for aluminum cylinders 
under point source generations. A Nd:YAG laser is 
used for ultrasonic wave generation in either ablation 
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FIG. 1. Waterfall plots of experimental displacements under 
ablation generation at z=0, 1, …, and 12 mm for an 
aluminum cylinder (2a=9.62 mm). 
 
or thermoelastic regime. The collimated optical beam 
is focused by means of a spherical lens (focus length 
is 150 mm). The diameter of the laser spot size is  
about 0.2 mm. The normal displacements were 
measured at the surface by using an optical 
heterodyne probe[4] with a power output of 100 mW 
and with a sensitivity of 10-14 m/ Hz .  
 
Ablation regime  
   First let us look at the acoustic waves measured 
under ablation generation. The experimental signals 
generated by the laser point source are detected at z=0, 
1, …, and 12 mm for an aluminum rod with a 
diameter 2a=9.62 mm. Here the observation angle is 
180°. As shown in Fig. 1, the waterfall plot of these 
waveforms clearly reveals various wave modes (see 
marked symbols). The direct longitudinal (L) and the 
once reflected longitudinal (LL) waves are clearly 
observable. The direct transverse (T) and the once 
reflected transverse (TT) waves are also observable. 
Their arrival times (displayed as dash lines in Fig. 1) 
are identical to their corresponding ray trajectories 
shown in Fig. 2(a). The first roundtrip of the 
cylindrical Rayleigh wave (R1) is clearly observable. 
Its arrival time is in agreement with that of the ray 
trajectory shown in Fig. 2(b). Moreover, the twice 
reflected longitudinal wave (3L) is observed, and its 
ray trajectory is found in Fig. 2(c). A head wave (H1) 
is observed, and its arrival time is identical to the 
corresponding ray trajectory in Fig. 2(b). Another 
head wave (H2) is also observed, and its ray trajectory 
is found in Fig. 2(d). 
 

 
 
FIG. 2. Ray trajectories of L, LL, T, TT, H1, R1, R2, 3L, and 
H2 waves observed in Figs. 1, 3-5. Here θc is the critical 
angle for aluminum rods. 
 
Thermoelastic regime  
   Now let us look at the acoustic waves measured 
under thermoelastic generation. The experimental 
signals generated by the laser point source are 
detected at z=0, 2, …, and 14 mm for the same 
aluminum rod. The observation angle is 180°. As 
shown in Fig. 3, the waterfall plot of these waveforms 
also clearly reveals various wave modes. The L, LL, 
3L, and TT waves were observed under the ablation 
generation (Fig. 1), whereas they are not easily visible 
under this thermoelastic generation. This can be 
explained by the different directivities of the two 
generations[3]. The flying paths of H1 and R1 waves 
are along the corresponding ray trajectories shown in 
Fig. 2. 
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FIG. 3. Waterfall plots of experimental displacements under 
thermoelastic generation at z=0, 2, …, and 14 mm for an 
aluminum cylinder (2a=9.62 mm). 
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FIG. 4. Experimental (top) and calculated (below) normal 
displacements at z=0 mm of an aluminum cylinder 
(2a=9.62 mm) under thermoelastic regime.  
 
   To illustrate the calculation accuracy, normal 
displacements are obtained and compared at the 
epicenter (z=0) and a non epicenter (z=6 mm) 
positions of the laser point detection for an aluminum 
cylinder (2a=9.62 mm) under thermoelastic regime. 
The comparisons are shown in Figs. 4 and 5, 
respectively, where the calculated waveforms are 
scaled vertically to account for the source magnitude. 
The arrival time, shape and relative amplitude of each 
wave are in good agreement. The R1 and R2 waves are 
clearly observed. Their trajectories are shown in Figs. 
2(a) and 2(b), respectively, and they have the same 
shapes and dispersive properties as that generated by 
the line source[6]. Moreover, the LL and the head (H) 
waves are observable. Specifically, the L wave is 
observable at the non epicenter detection (Fig. 5), 
while it is not visible at the epicenter detection (Fig. 
4). This can be explained by the directivity of the 
thermoelastic generation.  
 
Conclusion 
   A physical model has been presented to predict the 
acoustic field generated by a laser point source in 
either ablation or thermoelastic regime at any point of 
a homogeneous and isotropic cylinder. Experimental 
waveforms were measured and identified for either 
regime. Experimental and theoretical normal 
displacements under thermoelastic regime are 
compared for aluminum cylinders. Very good 
agreements are observed in the time, shape and 
relative amplitude (i) of the cylindrical Rayleigh 
waves with different roundtrips, and (ii) of the various 
longitudinal and transverse bulk waves propagating 
through the cylinder or reflected at the free circular 
surface. These results will be helpful in identifying the 
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FIG. 5. Experimental (top) and calculated (below) normal 
displacements at z=6 mm of an aluminum cylinder 
(2a=9.62 mm) under thermoelastic regime. 
 
useful wave modes when dealing with the inverse 
problem for the nondestructive evaluation of 
cylindrical parts. 
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