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Abstract
   We present a two-dimensional study of mode
conversions that occur when a harmonic incident
wave is reflected at the bevelled edge of a steel plate.
A harmonic Lamb wave (A1 mode) is excited in a
steel plate at a frequency-thickness product FE.
Firstly, expressing the stress nullity at the end of the
plate, the characteristics of the reflected waves (A0, S0
and A1 modes) are computed. Then, the theoretical
amplitude shape is composed in the thickness of the
plate, particularly on the bevel. So, the Lamb mode
ultrasonic field in the bevelled plate is known. These
results are compared with those obtained by a finite
element simulation. More, energy balances are
computed for several bevel angle values by the both
methods at FE=2.7 MHz mm.

Introduction
   The aim of this paper is the study of the reflection of
a Lamb mode at the end of a bevelled plate (angle
from 70 to 90 degrees). The reflected wave
characteristics are investigated in the case of the
harmonic antisymmetric A1 mode for a frequency-
thickness product FE equal to 2.7 MHz mm. The edge
of the bevelled end plate has no symmetry and we can
attempt reflected modes having the two symetries
(antisymmetric and symmetric). The reflection
coefficients of the reflected modes (A0, A1, S0 modes)
are computed by expressing the stress nullity at the
end of the plate. Then, we can compose the theoretical
amplitude at any point and determine the mode
ultrasonic field at any time in the plate. In order to
justify the theoretical calculus, a finite element
simulation is also carried out. Thus, a comparison is
done between the numerical and theoretical results.
The results obtained by both methods are compared in
different domains

Theoretical Investigation
   The Lamb wave conversion study has been initiated
by Torvik [1] who assumes that a harmonic Lamb
wave which propagates in a semi-infinite free plate is
converted in Lamb waves at the straight cut. We
extend to the bevelled plate case the theory carried out

by Shen and al [2-3]. We consider an incident wave
which is reflected at the end of a stainless steel plate
(CL=5850 m.s-1, CT=3150 m.s-1) (Figure 1). This wave
gives rise to few reflected waves having the both
symmetries (antisymmetric or symmetric).
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Figure 1: Geometry description

   In an infinite plate of thickness E, real, complex and
purely imaginary harmonic modes can exist
depending on whether their wave vector component
K1 is real, complex or purely imaginary at the
frequency F. A finite number of real solutions of the
equation of dispersion has been found for a given
frequency-thickness product (FE). These solutions are
associated to the Lamb waves. An infinite number of
complex modes also exist.

   In order to describe each mode at a frequency-
thickness product, a Fortran program computes
successively the wave number ' ' '

1 1 1= +K K j K , the
amplitudes ( )1 2, ,iU x x t , the stresses ( )1 2, ,ijT x x t  (i
and j=1, 2) and the Poynting vector flow Φ  through a
straight section of the plate (1 meter wide).

   The boundary condition has to be written to study
the reflection phenomenon. This boundary condition
is the nullity of the components F1 and F2 of the force
F  resulting from Lamb waves on the inclined section
[1]. These components depend on the stresses T11 , T12,
T21 and T22 and the components n1, n2 of the normal to
the surface (Figure 1):

WCU 2003, Paris, september 7-10, 2003

613



( ) ( )
( ) ( )

1 11 1 12 2 11 12

2 21 1 22 2 21 22

sin cos 0

sin cos 0

 = + = − =


= + = − =

F T n T n T T

F T n T n T T

α α

α α

   In order to express the boundary conditions at the
bevelled edge of the plate, a sufficient large number of
reflected modes must be used. If we only use the real
modes, the energy conservation can not be verified.
So, to satisfy this principle, we add to the first Lamb
modes some complex modes. Their real part '

1K  is
positive (reflected modes) or negative (incident mode)
and their imaginary part ''

1K  is positive and weak. For
FE=2.7 MHz mm, Lamb modes and the first
additional complex modes are represented in the
complex plane on Figure 2. At this FE product, purely
imaginary modes do not exist.
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Figure 2: Eigen modes in the complex plane
(FE=2.7 MHz mm)

   In order to determine the wave amplitudes, we use a
collocation method. Weighting  coefficient are
assigned to the wave displacements, respectively 1 to
the incident wave and rm to the mth-additional wave
(incident and reflected). The  stresses of the incident
and reflected waves are numerically computed at N
points uniformly distributed at the inclined extremity
(Figure 1).So, we suppose M  modes are added to the
incident mode and the stresses of these modes are
calculated at the N points. The stresses nullity at the
bevelled extremity is N times written as follows :
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   In order to obtain a good convergence of the rm
solutions, we solve the equations with N=800 points
and M=45 modes.
   As soon as the problem is solved [4-5], we can
compute the ultrasonic field representation. We note

1Ainc
iU  and inc m

iU  the incident displacement profiles of
the A1 mode and the mth additional modes. If 1Aref

iU ,
0Aref

iU , 0Sref
iU  and ref m

iU  are respectively the reflected
displacement profiles of the A1, A0, S0 mode and the
mth additional modes, we can compose the theoretical
incident and reflected amplitude shapes ( inc tot

iU  and
ref tot

iU ) in the plate by the relations:
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   So, we have a description of the ultrasonic field
plate [6-7].

   More, we must check that the energy of the incident
Lamb wave is wholly transported by the reflected
waves. Because the complex modes do not transport
energy, only reflected real modes have to be taken in
consideration in this sum. Indeed, far from the end of
the plate, only Lamb waves exist.

   In order to realise an energy balance, the Poynting
vector flow of the mth reflected and the incident
modes are respectively noted Pm and Pinc ( =inc incP φ ,

*.=m m m mP r r φ , where *
mr  is the complex conjugate

value of rm). So, the reflection coefficients can be

written: *.= =m m
m m m

inc inc

PR r r
P

φ
φ

. By this way, the

relative energy of each reflected mode is computed
and finally an energy balance can be done.

In the last part of this paper, results are presented for a
Lamb wave incident in a stainless steel bevelled plate.

Finite element computation

A finite element simulation has been used to compare
with the previous results. Computations are made with
the ANSYS Finite Element code. The studied stainless
steel plate is 40 mm long and 2 mm thick and its
characteristics are: Young modulus E=2.0043.1011

N.m-2, Poisson coefficient σ=0.29 and density ρ=7800
kg.m-3.
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To describe the Lamb wave propagation, a
modelisation by a two-dimensional mesh (Ox1x2) is
sufficient. The limited plate mesh consists of
rectangular element (400×20). Of course, the mesh is
finer in the bevel. With this kind of mesh, whatever
Lamb wave is propagating, the node density is more
than twenty elements per wavelength.

To generate a Lamb mode in the plate with the Finite
Element Method, a transient analysis method is
performed. The normal and tangential components of
the theoretical Lamb wave displacements are imposed
at the first plate nodes (Fig 3). A fifteen period burst is
applied in a rectangular window. So, the amplitude of
each mode present in the plate must be constant along
the burst (end and beginning excepted). Then we
collect the temporal evolution of the displacements at
the surface of the plate in order to obtain a time-space
image.
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Figure 3: First displacement profile.

   By the meaning of two successive Fast Fourier
transforms (temporal and spatial), the waves present
in the plate can be performed in the dual k-FE space
[5;8]. On this representation, we can perform a cut at a
precise FE product. So, the relative amplitudes can be
known versus the wave number and linked to the
transported energy [9]. Indeed, the normal
displacements at the surface of the plate are linked to
the corresponding energy by the mean of the Poynting
vector flow through a straight section of the plate. So,
for different bevelled plates, energy balances are
performed and compared to the theoretical studies.

Several comparisons
   Now, let us consider the A1 Lamb mode in the
stainless steel plate incident at FE=2.7 MHz mm and
reflected at a 70 degrees bevel. We can compare the
ultrasonic field computed by the both methods: theory
and finite element investigation (Figure 4 and 5).

   On the Figure 4, we present the visualisation
obtained when the incident wave arrives at the
bevelled edge. The comparison between the images a
(theoretical computation) and b (finite element
simulation) is not possible at any point. Indeed, the
finite element computation does not give a perfect
permanent sinusoidal mode. The comparison between
the incident waves is only possible where the
sinusoidal mode is established (so without the
beginning and the end of the burst). In this domain,
we observe similar periodicity for the displacements.
However, grey scales are not exactly the same.

U1 displacements

b

a

Figure 4 : Incident displacement shapes obtained by
both methods : theory (a) and Finite Element (b)

(A1 incident mode, FE=2.7 MHz mm, α=70 degrees)

The comparison (Fig.5) between the reflected waves
is more difficult. At a given time, a common spatial
domain is necessary in which the several reflected
Lamb modes are established. This domain is surely
more limited than for the incident modes.

b

U1 displacements

a

Figure 5 : Reflected displacement shapes obtained by
both methods : theory (a) and Finite Element (b)

(A1 incident mode, FE=2.7 MHz mm, α=70 degrees)

The images (a and b) differ because the FEM
computations are less precise: mesh size and
calculation time are limited.

   The second comparison we have done is about the
energy balances. Indeed, computations have been
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performed when the A1 Lamb mode is incident at a
frequency-thickness product FE equal to 2.7 MHz mm
in plates bevelled by different angles (α from 70 to 85
degrees). The energy curves of each reflected mode
(A0, S0 and A1 modes for this FE product) are reported
in Figure 6. Results obtained by the both methods are
presented.
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Figure 6: Comparison Theory (-) – Finite Element (--)
A1 incident mode, FE=2.7 MHz mm.

   We can see in this quantitative study that the finite
element computations confirm the theoretical results
obtained to the collocation method. Indeed, the trend
of the curves is the same in both cases.

Conclusion

   This paper presents a study of the Lamb wave
conversion at the bevelled edge of a stainless steel
plate. The study includes a theoretical calculus and a
finite element computation. They give the same
energy balance within a few percents. The theoretical
calculus shows that reflection of Lamb waves is well
described by a sum of numerous eigen modes of the
plate. Among these, the complex modes have a great
importance at the bevel.
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