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Abstract

Wavefield inversion often involves challenging math-
ematical problems which are not necessarily prone to
obvious solutions, though the complexity of the envi-
ronment in which the objects (scatterers, sources) to be
characterized via wavefield inversion lie, and the com-
plexity of the objects themselves, are such that even
high-end models of the real world may remain far too
simple. On the other hand, it is necessary to devise solu-
tion algorithms the computational level of which should
ideally authorize an end-user almost on-line decisions,
which might imply more modest goals (distinguishing
the few main features of some equivalent simplified ob-
ject), using modest means, than those initially aimed at.
Here, recently or presently developed methods (where
physical insight and proper mathematical modeling are
combined) are sketched, numerical examples given on
common test configurations, and their pros and cons
discussed in order to illustrate the above argumentation.

Introduction

The aim of this contribution is to show that non-
linearized inversion tools of time-harmonic wavefields
which behave quite suitably in simple yet not necessar-
ily canonical configurations of scatterers can be built
upon rather low-key theoretical analyses of the scat-
tering phenomenon. By the above, is meant that these
tools evidently require a good blend of appropriate the-
oretical investigations and proper physical insight, but
do not impose upon us the burden of too sophisticated
mathematics, and more importantly do not suffer too
much from discrepancies between the numerical frame-
work effectively put into force and the formal apparatus
behind it, or from the lack of proper proofs regarding
usual and difficult questions, such as uniqueness and
stability.

The material is based upon research results obtained
during the last few years by the authors and their co-
workers, mostly in acoustics but also in electromagnet-
ics (in cases which may be of relevance to the acousti-
cal community), their main purpose being to illustrate
the above argumentation in good fashion. The present
contribution focuses on wavefield inversion tools which
aim at the identification of the location, the cross-

sectional shape and (for penetrable cases) the acoustic
parameters of passive 2-D scattering obstacles which
are buried in some prescribed free space or layered en-
vironment and which are illuminated by a known, pos-
sibly frequency-diverse and orientation-diverse primary
field.

Only the retrieval of binary objects is considered
herein, the said objects consisting of homogeneous
zones separated by well defined yet geometrically un-
known boundaries, the parameters of the homogeneous
zones with respect to the embedding space being ei-
ther known beforehand or being sought –this notion of
binary objects is encompassing here both impenetra-
ble objects (Neumann or Dirichlet boundary condition)
and penetrable ones (transmission boundary condition)
as well. Four binary-specialized methods investigated
by the authors and co-workers, the controlled evolu-
tion of level-sets [1], [2], [3], [4], the distributed source
method [5], the Intersecting Canonical Body Approxi-
mation (ICBA) method [6], [7], [8], and the Modified
Rayleigh Conjecture (MRC) method [9], are discussed
below, illustrative numerical results given, and possibly
needed complementary developments pointed out.

In relation to the topic, it is opportune to men-
tion three recently edited special sections in which the
reader may find complementary material contributed by
the authors, and many others, with regard to practical,
real-world situations: confrontation of a number of lin-
earized and non-linearized inversion algorithms to the
same sets of laboratory-controlled microwave data [10],
underwater acoustics [11], and nondestructive evalua-
tion of artificial materials [12].

The solution methods

The main model ingredients

Let ui(x, ω) be an incident monochromatic wavefield
(the exp(−jωt) time (t) factor, with ω the angular fre-
quency, is henceforth implicit) at point x = (r, θ) of the
xOy plane (i.e., the field that exists in the absence of
the object in a medium with some constant wavenum-
ber k), us(x, ω), u(x, ω)(= ui(x, ω) + us(x, ω)) the
scattered and total fields in response to ui, Ω being the
cross-section of the object within a prescribed search
box D of the xOy plane —Ω is non-necessarily singly-
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connected, i.e., there may be several objects in the do-
main of study—, and Γ = ∂Ω the boundary of the ob-
ject (or its constitutive parts), assumed to be smooth
(C2-type). If there exists only a single object, the latter
is assumed to be representable by the parametric equa-
tion r = γ(θ), γ a continuous, single-valued function
of θ, the origin being taken at O assumed interior to
Ω. Only linear, isotropic, time-invariant materials are
considered, fluid ones in acoustics (only compression
waves are supported), non-magnetic Maxwellian ones
in electromagnetics.

As indicated above, the case under study is binary:
the object is made of a homogeneous material and is
imbedded in a homogeneous space (for several of the
considered methods, it is possible for the host to be
horizontally-layered provided the object boundary does
not intersect any interface). Two configurations are of
interest thereafter, the impenetrable one and the pene-
trable one.

We illustrate the analysis of the first configuration
with acoustically-soft objects, for which a Dirichlet
boundary condition holds –with the controlled evolu-
tion of level sets, in numerical practice, one simply in-
puts a high attenuation inside the object domain such
that the field cancels out very quickly from the surface
inwards due to a strong skin effect. For the analysis
of the second configuration, one considers fluid media
characterized by their speed of sound (density is as-
sumed constant throughout space, this may not be a mi-
nor approximation), which leads to a binary problem in
which the ratio (it may be complex-valued, with pos-
itive imaginary parts, if losses exist inside the object)
between wave numbers kΩ inside and k outside the ob-
ject is taken as a constant (prescribed or sought).

The controlled evolution of level sets

This method applies both to penetrable objects and,
asymptotically at least, to impenetrable objects (by giv-
ing to kΩ a high imaginary part as indicated above),
possibly multiply-connected, and set in free or layered
space. It is based on a combination of two methods,
the level set representation of shapes [13] and the speed
method [14], and allows topological identification in the
sense that merging, division, emergence and disappear-
ance of the sought domains are enabled. Indeed, the
closed contours Γ of any object are the zero-level of
a level set φ, and these contours are simply evolved in
space x and pseudo-time t, as a consequence of the evo-
lution of the whole level set, in order that a suitable ob-
jective function, JM, be minimized. The latter function
basically (since one could further impose constraints of
least perimeters and least areas) is made of the mean
square norm of the discrepancy between the scattered
field effectively collected in some exterior-to-D mea-

surement domain, M, and the one associated with an
object retrieved within D at a given t with contour(s)
Γt, appropriately normalized with respect to the mean
square norm of the data.

The evolution itself is governed by a Hamilton-Jacobi
(HJ) equation which links, through the action of the ve-
locity field of motion (oriented along n the unit normal
to the contour Γt, with algebraic value V ), the partial
derivative of φ with respect to t to the norm of its gradi-
ent in space: ∂φ

∂t
(x, t)+ V (x, t) |∇φ (x, t)| = 0,∀x ∈

D,∀t ≥ 0.
The velocity V is now built so that the derivative

dJM/d t of the objective function with respect to time
is negative (pending numerical uncertainties). It can be
shown, within a rigorous Green domain integral frame-
work of the wavefield and using appropriate elements of
control theory, that V (x, t) = −<[g(x, t)], where g is
the so-called shape gradient at Γt, extended to all points
inside D, the latter being proportional to [u(x)p(x)]; p
is an adjoint field whose source term is made as is usual
from the conjugated discrepancy of the data error inM
and which satisfies domain integral equations similar to
those satisfied by u.

The above results being available, a fast marching al-
gorithm, via discretization in time (step ∆t) and space
(with fixed grid), of the HJ equation yields, from a given
level set φ at n∆t and a given velocity, an updated level
set one time step ahead, at (n + 1)∆t; its zero level
yields the newly retrieved boundary, and a new velocity
follows from the shape gradient calculated by solving
the corresponding direct and adjoint problems. This
goes on until a satisfactory solution is obtained (with
hopefully low data error in M). It should be empha-
sized that the object boundary is implicit (black, non-
zero-contrast pixels inside it and white, zero-contrast
pixels outside it provide the map of Ωt).

When contrast and shape are both unknown, one sim-
ply resorts to a sequence of optimal searches, one via
the above procedure for a given contrast, one for a given
shape, via a Levenberg-Marquardt non-linear solver as
is summarized in [4], numerical experimentation guid-
ing us to select the best parameters for each optimiza-
tion.

The distributed source method

This method applies to a single, acoustically-soft or
acoustically-hard, object, which is star-shaped with re-
spect to the origin of coordinates (assumed to be a ref-
erence interior point). It involves the minimization of
a two-term objective functional JM + σJΓ with real
positive weighting parameter σ; the first term JM, as
before, contains the fit in M between data and field as-
sociated to the test object, and the second term JΓ is
associated to the satisfaction of the boundary condition
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on its contour.
Henceforth assuming a test object with contour Γ

described by function γ(θ), the scattered field at x is
equated to a finite weighted sum of M exact Green
functions of the unperturbed (free or layered) envi-
ronment, G(x,xΓ

m). Their source locations x
Γ
m,m =

1, ..,M , are on a closed curve Γ̂ kept inside the do-
main encircled by Γ and homothetic with it, by en-
forcing

∣

∣

x
Γ
m(θ)

∣

∣ = αγ(θ), α constant real multiplica-
tive factor less than 1. One thus has us(Γ,x) =
∑M

m=1 cmG(x,xΓ
m), which corresponds to a truncation

of an infinite series made of Green’s functions with
position-independent weighting coefficients (complete
family representation). Correspondingly, the boundary
cost function, JΓ, is the normalized mean square norm
of the error along Γ in canceling out either the total field
(Dirichlet) or its normal derivative (Neumann); the nor-
malization is now carried out with respect to the norm
of the incident field ui at the same location, or of its
normal derivative.

In practice, the boundary condition is enforced
at Q discrete nodes chosen at regularly spaced an-
gles θq, and the Dirichlet hypothesis leads to JΓ =
∑Q

q=1 |u(Γ, θq)|
2JaΓ(θq)/

∑Q
q=1

∣

∣ui(Γ, θq)
∣

∣

2
JaΓ(θq);

here, u(Γ, θq) (resp., ui(Γ, θq)) is the total (resp., inci-
dent) field at point γq (= γ(θq), θq), and Ja(θq) is the

discrete value of the Jacobian JaΓ(θ) = (γ2 +(dγ
dθ )2)

1

2 ,
the Jacobian transformation enabling to calculate the
boundary cost function on the fixed unit circle and
not on the evolved contour. As for the Neumann
hypothesis, it is dealt with by replacing u by ∂nu in
the above Dirichlet-type equation. The object contour
Γ is easily described by means of a 2N -coefficient
sine-cosine expansion of the function γ(θ).

The unknowns are the 2N real coefficients an (de-
scribing Γ) and the M complex coefficients cm (ampli-
tudes of the interior sources), the boundary condition
being enforced at the Q nodes on Γ. These coefficients
are obtained by a Levenberg-Marquardt solution algo-
rithm, starting from an initial shape contour (via the
an) and an initial field (via the cm), typically an ini-
tial circle: a0 = R0, a1,... = 0, all equivalent sources
being extinguished (cm = 0,∀m). The limitation of the
method is that the contour should be star-like with re-
spect to an inner point, but here, as illustrated in the cor-
responding numerical example the co-ordinates of the
reference point are also considered as being unknown
and are provided by the solution algorithm.

Notice that a penetrable object could be retrieved by
using two sets of equivalent sources (inside, to model
the outer field, outside, to model the inner field), trans-
mission conditions being enforced on the sought con-
tour, like in the earlier investigation [15], but this mostly

remains to be probed further.

The ICBA and MRC methods

Let us henceforth consider an acoustically-soft,
singly-connected object in free space. The Modi-
fied Rayleigh Conjecture (MRC) enables us to obtain
the partial wave amplitudes directly from the scattered
field, collected on a circle completely enclosing the ob-
ject, and then to obtain the shape by use of the Rayleigh
hypothesis ansatz of the scattered field [6] in the bound-
ary condition. Let Γb be a circle of radius b that circum-
scribes the object, the origin O being assumed some-
where within it, with b > γ := maxθ∈[0,2π[ γ, where
the scattered field, ûs, is collected. The contour func-
tion γ(θ) which embodies all that is known about the
object is arrived at as follows.

The partial circular cylindrical wave representation is
u(x) = ui(x) +

∑∞
n=−∞AnH

(1)
n (kr)ejnθ, r ≥ ρ, θ ∈

[0, 2π[, wherein H
(1)
n are the Hankel functions of the

first kind and n-th order, and An the coefficients that
result from a weighted integration of the measured scat-
tered field ûs (a corrupted set of data should mostly
affect coefficients of large indices, and at the end en-
able us to reconstruct only a smoothed profile). The
Rayleigh hypothesis (termed “conjecture” in [16], [17])
now assumes that the cylindrical wave representation
approximately holds up to the boundary of the object.
The Rayleigh coefficients AR

n are to be used instead of
the An and summed from n = −N to N , those AR

n be-
ing henceforth taken as ≈ An,∀n ∈ [−N,N ].

Field cancellation on the boundary means that
ui(γ(θ), θ) +

∑N
n=−N AR

n H
(1)
n (kγ(θ))ejnθ ≈ 0, θ ∈

[0, 2π[. A discrete form, γm := γ(θm),m =
1, ..,M of the actual boundary Γ follows by search-
ing for the minima of the set of M uncoupled non-
linear cost functions J(γm, θm) :=

∣

∣ui(γm, θm) +
∑N

n=−N AR
n H

(1)
n (kγm)ejnθm

∣

∣

2
, m = 1, ..,M . As an

alternative, one can expand the contour function into a
Fourier series as previously, and seek its Fourier coef-
ficients via minimization of a coupled set of cost func-
tions.

The uncoupled version of the MRC procedure (em-
ployed herein) is close to, and the numerical effort is
about the same as with, the ICBA method [7]. But key
differences remain. In the ICBA method, for any par-
ticular scattering direction, the measured field is con-
sidered to be none other than the one due to a canonical
object, here a circular disk, of same material composi-
tion and illuminated by the same incident field.

The field scattered by such a disk satisfies
a relationship of the form u(x) ≈ ui(x) +
∑∞

n=−∞Bn (γ(θ))H
(1)
n (kr)ejnθ, r ≥ γ, θ ∈ [0, 2π[

where the Bn coefficients are known in closed form
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for a given radius and a given contrast. Each radius
γm of the locally equivalent disk at θm is found by
minimizing the non-linear cost function K(γm, θm) :=
∣

∣us(b, θm) −
∑N

n=−N Bn(γm)H
(1)
n (kb)ejnθm

∣

∣

2
, and

the discretized contour of the object follows from
the minima of the uncoupled set of cost functions
{K(γm, θm); m = 1, 2, ..,M}. If the contrast is it-
self unknown, one may solve the set of now coupled
non-linear equations at once. Dealing with the Fourier
coefficients of the contour function is also an option.

Both the MRC and ICBA methods require a suitable
field expansion of order N (like ≈ kγ) –which fail to
correctly describe the scattered field if the sought ob-
ject is needle-like, exhibits strong concavities (the dis-
tributed source method would fail as well), or is largely-
decentered with respect to the origin O of the laboratory
frame– call for commensurate Fourier expansion of the
contour (if it is employed) and a Rayleigh-type expan-
sion of the field, while suffering from non-uniqueness
of the solutions even in ideal cases.

In short, the two methods call for a suitable (although
fully-automated) post-processing (called ‘proximity of
minima positions’) scheme to get the most plausible
contour (using data at two or even more frequencies,
the sought boundary being expected to be the only one
that moves the least with frequency as is discussed in
[9]).

An interesting feature of the ICBA method is that it
readily applies to a penetrable object and even layered
environments can be considered as long as some canon-
ical object scatters off a field which is known in suit-
ably simple closed form [11]) and can be used locally
to match to the sought one, with no theoretical worries
of the kind met with the MRC.

Numerical illustrations
In the following, the first two solution methods

(controlled evolution of level sets and the distributed
sources) are tested against synthetic data obtained by
solving the boundary integral equations rigorously sat-
isfied by the wave field using a method of moments. As
for the two other methods under evaluation, the ICBA
solution method is tested against data generated by the
Rayleigh hypothesis technique, and the MRC solution
method is tested against data generated by the ICBA.

The configuration under study consists of a single
square obstacle of size a = 0.888 mm centered at
(x = 0.25 mm, y = 0.25 mm) which can be penetrable
(sound speed c = 1800 m/s and attenuation α = 0), or
sound-soft (Dirichlet boundary condition), and which is
embedded in water (sound speed cwater = 1470 m/s and
attenuation αwater = 0) —attenuation if any is intro-
duced through the wave number k as k = 2πf/c + iα

where f is the frequency. Density is fixed everywhere
to ρ = 1.

The illumination then may consist of four line
sources at four frequencies (0.5, 1.0, 1.5 and 2.0 MHz)
placed each π/2 on a 3 mm-radius circle, 32 receivers
each π/16 on the 3 mm-radius circle collecting the scat-
tered field for each probe wave, and all such data being
employed simultaneously in the inversion. This is the
case with the first two solution methods.

As for both the MRC and the ICBA methods, four
plane probe waves at angles θi = 0, π/2, π, 3π/2 are
considered, and, since these methods reconstruct the
boundary in a local manner, the dataset associated to
θi = 0 is employed to retrieve the boundary in the an-
gular sector −π/4 < θ < π/4, the one associated with
θi = π/2 is employed to get the boundary in the next
angular sector π/4 < θ < 3π/4, and so on. Now,
only two frequencies, either 0.5 and 1.2 MHz (low-
frequency pair), or 2.3 and 2.5 MHz (high-frequency
pair) are used.

Let us emphasize also that the results obtained by the
method of controlled evolution (with or without con-
trast reconstruction) are obtained using a search zone of
2.5 mm × 2.5 mm centered at (x = 0 mm, y = 0 mm)
and discretized into 40 × 40 pixels, whereas those ob-
tained by the MRC and ICBA only assume that the ob-
stacle is located within the much larger disk of radius
3 mm defined by the receivers, the origin of the refer-
ence frame being then assumed to be contained within
the obstacle.

Penetrable obstacle
In figure 1 are presented the results obtained by the

method of controlled evolution combined with the con-
trast reconstruction. The process is initialized with
a single square obstacle (figure 1(a)) of sound-speed
c = 2000 m/s. The best solution (corresponding to
the lowest value of the cost function) is presented in
figure 1(b). The cost function and contrast evolutions
as a function of the iteration number are depicted in
figure 1(c) and figure 1(d), respectively. The recon-
structed obstacle (obtained at iteration 23) perfectly fits
the exact one and its sound-speed is found to be equal
to 1799.38 m/s.

Impenetrable obstacle
As indicated below, the reconstruction of an impen-

etrable obstacle by the method of controlled evolution
as introduced here is not straightforward. As a matter
of fact the evolution of the obstacle contour during the
iterative procedure is proportional to the total field: the
interior total field of an impenetrable obstacle is zero,
which does not allow any evolution. So, one introduces
some large attenuation allowing a limited field penetra-
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Figure 1: Reconstruction of a penetrable obstacle by
controlled evolution of level sets with contrast

optimization: initialization (c = 2000 m/s) (a), the best
reconstruction (iteration 23) (b), evolution of the cost
function as a function of the number of iterations (c)
and the one of the sound speed of the obstacle (d).

tion in the obstacle. The idea is to use a set of increasing
attenuations so as to lead to a progressively-improved
description of the boundary. In our example (figure 2)
one uses α = 103, 3 103 and 6 103. The procedure (fig-
ure 2(a)) is initiated with the lowest attenuation. Once
convergence is observed, the best solution reached at
that point is taken as the initial solution with a higher
attenuation (here α = 3 103). And so on, until conver-
gence. In figure 2(e) is illustrated the convergence of
the procedure with respect to the different attenuations
chosen.

The results obtained by the distributed source tech-
nique are presented in figure 3. The reconstructions are
obtained using M = 30 and N = 4, 8; note that the
center (x, y) of the star-like shape has not been fixed
beforehand and is searched also. The procedure is ini-
tialized by a circular test obstacle of radius r = 0.5 mm
centered at (x = 0, y = 0). Then the sought boundary
is described using a small number of coefficients an

(here n = 1, . . . , 2N(= 8)) to constrain the boundary
to remain smooth. Upon convergence the number of
coefficients is increased (n = 1, . . . , 2N(= 16)), using
the final solution of the first inversion as initial guess.
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Figure 2: Reconstruction of a sound-soft obstacle by
controlled evolution of level sets with fixed contrast:

initialization (α = 103) (a), the best solution obtained
with α = 103 (b), with α = 3 103 (c) and with

α = 6 103 (d), evolution of the cost function as a
function of the number of iterations (e).

In figure 3(a) the first-guess obstacle compared to the
exact one and the best solution which is reached with
N = 4 coefficients are shown. In figure 3(b) the best
solution reached with N = 8 coefficients is shown, the
procedure being started from the previous N = 4 solu-
tion.

For the ICBA and MRC solution methods, since they
work in similar fashion, they are illustrated together.
For each probe radiation frequency f and each discrete
polar angle θ, a set of candidate solutions (minima, both
global and relative, of the cost function expressing the
discrepancy between the data and the estimator thereof
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(a) (b)

Figure 3: Reconstruction of a sound-soft obstacle
using the distributed source method. (a) N = 4:

initialization (●), the best solution (▲, iteration 300);
(b) N = 8: the best solution (◆, iteration 100).

for trial boundaries) is given. Both candidate bound-
ary points at each frequency of operation (specified by
‘o’ for the lower frequency and by ‘x’ for the higher
frequency in the same pair) and post-processed bound-
ary points are depicted. The goal of the post-processing
is to single out a unique solution for each angle θ in
searching (by ‘proximity analysis’) for the two points in
the above two sets that are closest to each other (since
theory suggests that two points of these two sets that
are coincident designate the correct boundary point).
This is done in fully-automatic (no human intervention)
manner by the computer —ideally, the reconstructed
boundary should appear as a set of points, each one of
which is the coincident location of a ‘o’ and ‘x’ for each
θm.

Figs. 4-5 pertain to the reconstructions obtained by
the ICBA method, using the low- and high-frequency
pairs, the boundary being recovered fairly accurately
for both.

Figs. 6-7 pertain to the reconstructions obtained by
the MRC method, using the low- and high-frequency
pairs. One observes that the boundary is not well-
recovered, especially for the lower-frequency probe ra-
diation pair. The fact that the results are quite different
in the low- and high-frequency regimes may be an in-
dication of the instability of this method, notably at the
stage whereby the Rayleigh coefficients are obtained by
quadrature of the data. Notice should be taken of the
fact that if the search zone had been made smaller (as
for the level-set and distributed source methods), many
of the spurious solutions in Figs.6-7 would have been
eliminated.
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