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Abstract 
   A method of estimating effective macroscopic 
material properties (stiffness and density) for 
heterogeneous elastic materials containing 
distributions of identical infinite cylindrical objects, 
randomly and uniformly distributed, is formulated 
based on the theory of elastic-wave multiple 
scattering. We show that the equivalent homogeneous 
medium possesses effective dynamic complex-valued 
density and stiffness, which are frequency-dependent. 
Dynamic explicit expressions, requiring minimal 
computational effort, are established in terms of both 
the wavenumber in the object-free host medium and 
the single-particle forward and backward scattering 
amplitudes in the far field. Predictions for the 
dynamic properties are presented in the cases of a SH 
wave propagating in a solid containing empty cavities 
and of an incident longitudinal wave interacting with a 
set of water-immersed solid bars. In both cases, the 
qualitative behavior of the dynamic properties is in 
agreement with physical expectations. 
 
Introduction 
   Modeling of linear wave propagation in 
heterogeneous media, such as bubbly liquid [1] or 
even fiber-reinforced material composite [2, 3], is still 
a challenging problem in the investigation of internal 
microstructure. Derivations have been performed to 
predict both propagation of plane wave [1, 2, 4-7] and 
dynamic (frequency-dependent) effective material 
properties [3, 8]. The term effective is associated with 
the long wavelength assumption used to denote the 
macroscopic behavior of the continuous phase (host 
medium) combined with the discontinuous one 
(objects). 
   The aim of this work is to describe macroscopically 
the dynamic behavior of a two-phase medium in 
which the energy dissipation mechanisms are only due 
to the multiple scattering between the elastic objects 
contained in the lossless host medium. Independent 
explicit analytical expressions are derived for the 
effective frequency-dependent material properties 
(density and stiffness) of a two-phase medium, in 
terms of the scattering amplitudes for a single object 
in the host medium. Unlike previous works [1], no 
assumption about the expression of the effective 
density has been made. When the energy losses are 
induced only by multiple scattering, we show that the 

effective medium can be seen as a linearly dissipative 
material in which inertial coupling between the two 
phases cannot be neglected. In other words the 
effective stiffness and density are both frequency-
dependent complex-valued functions. 
   After stating the problem, formulae for the dynamic 
material properties are established from the responses 
in transmission and reflection of a two-phase slab 
viewed by an incident plane wave as either 
heterogeneous or homogeneous. In this paper we refer 
to the notion of heterogeneity when we take into 
account the multiple scattering phenomena between 
the objects. 
 
Problem statement 
   We consider a two-phase medium in which both 
phases are purely linearly elastic and isotropic. The 
two-dimensional objects are assumed to be identical, 
parallel, infinite and distributed randomly and 
uniformly. The incident wave travels normal to the 
symmetry axes of the objects. Material properties and 
acoustic field quantities of the host medium are 
indicated by the superscript 1 and those of the object 
by the superscript 0. 
   While the propagation of a plane monochromatic 
wave in the lossless object-free host medium is 
governed by the real-valued wavenumber , it is well 
known [4, 6] that the coherent plane wave propagation 
in the two-phase medium can be conveniently 
described by an effective wavenumber, given by 

1k

 iK
c
ω α= + , (1) 

where  is the imaginary unit, and i ω  is the angular 
frequency. In Eq. (1), c  and α  stand for the 
frequency-dependent effective phase velocity and 
effective attenuation. Occurred losses are here 
assumed to be induced only by multiple scattering, 
and anelastic attenuation is not taken into account. 
Note that no subscript is used for the properties of the 
equivalent homogeneous medium. 
   The problem to be solved is then reduced to 
expressing the material properties of the effective 
continuous medium from the effective wavenumber 

. Assuming the effective continuous medium 
behaves as a linearly dissipative material, the 
dispersion relation can be written as [3] 
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where ρ  is the effective density and M  is the 
effective stiffness which relates linearly the spectra of 
strain and stress. The main effect of the dissipative 
processes, in a macroscopic description of sound 
propagation, is that in the dispersion relation (2), the 
density and the stiffness must be complex-valued 
quantities. While the density iρ ρ′= + ρ′′  expresses 
the geometry-dependent inertial coupling between the 
individual materials or phases, the stiffness 

iM M= − M′ ′′  represents the constitutive law of the 
continuous medium. 
 
Determination of the dynamic material properties 
   The dispersion relation (2) by itself is not sufficient 
to extract both the effective density and the effective 
stiffness from the effective wavenumber . In the 
following, the necessary additional relation is 
obtained from the comparison between the wave 
amplitude transmission T  and reflection 

K

R  responses 
of a two-phase slab, viewed as either heterogeneous or 
homogeneous. The thickness of the slab is denoted d. 
 
Multiple scattering approach 
From the analysis of the coherent displacement field 
in (and out of) the slab, we find that the wavenumber 

 takes the following form [7]  
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and that the coherent responses in transmission and 
reflection of the two-phase slab to normally incident 
SH or longitudinal waves are the following over the 
entire frequency range [7] 
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where    ( )1 2iA b K b k b± + − += ± −

and ( ) ( )( )0

1

i 0nb f f
k
π π± = ± . 

The dependence of Eq. (3) in terms of the object 
density  and the single-object backward 0n ( )0f  and 
forward ( )f π  scattering amplitudes in the far field is 
identical to the one established by Waterman and 
Truell [4] for point-like objects. Finally, by combining 

Eqs. (3), (4) and (5), the coefficients T  and R  can be 
explicitly rewritten as functions of the scattering 
amplitude f , the object density , the wavenumber 

 in the host medium and the slab thickness d. 
0n
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Homogeneous approach 
In this subsection, we focus on the normal-incidence 
transmission and reflection coefficients for a 
homogenous slab with a linearly dissipative response 
embedded in a purely elastic material. Considering the 
continuity of the normal displacement and stress 
across both interfaces, we obtain the same formulae as 
those given in Eqs. (4) and (5) in term of the Q 
parameter dependence. The Q parameter (6) depends 
in this case on the acoustic impedances of both media, 

 and Z , and is given by  

 1

1

z ZQ
z Z
−

=
+

. (7) 

   In addition, observe that the cases of the SH and 
longitudinal waves differ by a minus sign in the 
expression (5) of the wave amplitude reflection 
coefficient R. Therefore, in contrast to the multiple 
scattering approach, the coefficient R, Eq. (5), 
depends on the nature of the incident plane wave. 
   Finally writing the acoustic impedances as functions 
of the material density and of the wavenumber,  

 1
1

1

z
k
ρ ω

=  and Z = , (8) 

allows one to express the coefficients  and T R  in 
terms of the material densities,  and ρ , and the 
wavenumbers,  and . 1k K
 
Dynamic material properties 
Comparison of the analytical expressions for T  and 

 established in the two previous subsections leads 
us without difficulty to a formula for the effective 
density ρ  in terms of the scattering amplitude, the 
wavenumber  and the object density . By using 
Eqs. (2) and (3), the dimensionless effective density 

1k 0n
τ  

and stiffness M , defined by 

 
1

ρτ τ τ
ρ

′= + =  and 2M M
ρ

′ = , (9) 

are then functions of frequency. Normalization has 
been performed with respect to the lossless host-
medium properties, where c  represents the phase 
velocity of the incident wave. We find then for 
incident SH waves 

1
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while for incident longitudinal waves 
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Numerical simulation 
   The suitability of the formulae (10)-(13) for the 
effective dynamic material properties of two-phase 
media is examined in two examples. The cases of 
incident SH (longitudinal) waves propagating in a 
solid (non-viscous liquid) containing a random and 
uniform collection of cylindrical empty cavities (solid 
bars) are examined in the following. 
   Due to the nature of both the incident plane wave 
and the constituents composing the studied two-phase 
media, the effective stiffness M , Eq. (2), represents 
either the shear stiffness for the present case of SH 
incident plane waves or the compressive stiffness for 
the case of longitudinal incident plane waves. The 
volume fraction φ  of cylindrical objects of radius  
is defined by 

a
2n a0φ π= . 

 Figure 1: Dynamic material properties of a solid 
medium containing cylindrical cavities and subjected 

to incident SH waves: the density τ  and the shear 
stiffness M  versus the frequency ω  varying the 

volume fraction φ . 

SH waves in a solid with cylindrical empty cavities 
Fig. 1 shows the frequency-dependent dimensionless 
effective density τ , Eq. (10), and shear stiffness M , 
Eq. (11), over a frequency range related to the 
homogeneous assumption. In all the figures, where we 
choose the dimensionless frequency lower than 1, the 
quantity  is greater than (/ 2 aλ ) π , λ  representing 
the wavelength of the incident wave in the host 
medium. 

   Examination of the effective material properties, 
Eqs. (10) and (11), in the long wavelength limit shows 
that the dimensionless effective density and shear 
stiffness become as follows in the static limit 

 ( )0 1τ ω φ= = − , (14)    As seen in Fig. 1, the effective material properties, 
τ  and M , are complex-valued quantities and their 
frequency dependence is not negligible. The real parts 
of τ  and M  are less than 1. The empty cavities affect 
the initial material properties of the host medium by 
making them lower. The two-phase medium is 
therefore less dense and less stiff than the host 
medium. This shows weakening of the host medium 
by the presence of the empty cavities.  

 ( ) 10
1 2

M ω
φ

= =
+

. (15) 

While Eq. (14) is identical to the one defined by the 
mixture rule, the static value of M  matches well, in 
the dilute case ( 1)φ , with already-established 
expressions [2, 3]. 
    When the object density tends to 0, the real parts of 

τ  and M  tend to 1, while both imaginary parts tend 
to 0. This points out that the deviation between the 
properties of the host and two-phase media decreases 
with the volume fraction of empty cavities.  

Longitudinal waves in a non-viscous fluid with solid 
bars 
Results for the prediction of the effective material 
properties of the two-phase medium subjected to a 
compressional perturbation, Eqs. (12) and (13), are 
displayed in Fig. 2, for different values of the bar 
concentration, as a function of the dimensionless 

   From a physical point of view, all these results are 
qualitatively acceptable. 

 

WCU 2003, Paris, september 7-10, 2003

465



 ( )
( )( )

( ) ( )( )
2 2

1

22 2
1

1
0 1

1 1
M

φ κ ρ κ
ω

ρ κ φ κ ρ κ

− −
= = −

− + − −
 (18) 

frequency ω . The dimensionless parameters 
representative of both phases have been chosen as 

 0

1

9ρρ
ρ

= = , 0

0

0.5
sc

c
κ = =  and 1

1
0

0.3c
c

κ = =  (16) 
show that the static behavior of the considered two-
phase medium is purely elastic. The difference 
between the effective density given in Eq. (17) and 
that satisfying the mixture law, ( )1 1τ φ ρ= + − , has 
already been explained by the relative motion between 
the bars and fluid. 

to correspond approximately to the case of steel bars 
immersed in water. In Eq. (16), 0ρ ,  and 0c 0

sc  stand 
for the density, the phase velocity of the longitudinal 
and shear waves in the bars, respectively. 
   In contrast to the SH case, the bars affect the 
material properties of the non-viscous fluid by 
increasing the effective density and the compressive 
stiffness of the two-phase medium. This shows 
strengthening of the host medium by the presence of 
bars. All other comments made in the previous 
subsection concerning Fig. 1 remain valid. 

 
Conclusion  

 

   Finally, the values in the low-frequency limit of the 
dimensionless effective density and compressive 
stiffness  

 ( ) 10 1 2
1

ρτ ω φ
ρ

 −
= = +  + 


 , (17) 

   Independent analytical formulae for the effective 
frequency-dependent density and stiffness of two-
phase media are derived for a lossless host medium 
subjected to a SH or compressional disturbance and 
containing two-dimensional lossless objects 
distributed uniformly and randomly. We demonstrate 
that two-phase media, in which energy dissipation 
mechanisms are assumed to be only due to multiple 
scattering phenomena, have a linearly viscoelastic 
response in which the inertial coupling between the 
phases cannot be ignored. 
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