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Abstract

The application of nonlinear standing waves is con-
nected with the high quality resonators that enable to
accumulate the large amount of acoustics energy. This
work deals with the possibilities of nonlinear attenu-
ation by means of selective absorber in acoustic res-
onators. This passive method enables to enhance the
quality factor

�
. To increase the quality factor

�
it

is possible also using the method based on the active
suppression of the second harmonic component of the
sound wave. The inhomogenous Burgers equation is
used for description of nonlinear standing waves in the
resonator cavity. The numerical solution is computed
in the frequency domain. It is presented the comparison
between the passive and active methods for higher har-
monics suppression which are generated in the course
of cascade processes.

Introduction

Using of nonlinear standing waves is limited by the
nonlinear attenuation that causes the acoustic saturation
effects. The important characteristic of the resonator is
the quality factor

�
that shows how many times the am-

plitude of the steady-state wave is greater then the am-
plitude vibration of the exciting piston. The

�
-factor

depends on the amplitude of the vibrating piston due to
nonlinear attenuation. The nonlinear attenuation is con-
nected with nonlinear acoustic wave interactions when
we can observe generation of higher harmonics. As the
thermo-viscous attenuation is proportional to the square
of frequency it is possible to decrease the nonlinear at-
tenuation by suppression of the wave cascade processes.
The resonators of the high

�
-factor are used for thermo-

viscous engines, acoustic compressors, chemical disin-
tegrating devices.

Consistent with the second-order nonlinear theory,
acoustic fields in the resonator can be represented by
counter-propagating waves which are assumed to not
interact in the resonator volume. These waves are cou-
pled only by boundary conditions. If we suppose that
the waves are slowly varying in space and in time it is
possible to describe the waves by means of the inho-
mogeneous Burgers equation. When the exciting piston
radiates more than one eigen-frequency of the resonator
one can control generation of harmonics.

Model Equations for the active suppresion and the
passive absorption

When describing the nonlinear plane standing waves
in resonator of a constant radius it is possible to use
the inhomogeneous Burgers equation in dimensionless
form
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where the dimensionless coordinates are defined as� �<;>= �%?A@B � 9 
 �� � ? 
1� 9 ��� � = �= � 9 (2)

where
@

is time, B � is the small signal sound speed, ;is parameter of nonlinearity,
?

is the angular frequency,= � is the velocity amplitude,

DC

and

DE

are the retarded
times 
1C � @ �GFB � 9 
DE � @ � FB � 9 (3)

where F is the space coordinate in the direction of the
resonator axis.
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where & is the resonator length.
� � is the amplitude of

the 0 -th harmonic of velocity
�K�

� � � JLNMPO� ��� (+*Q, $ 0 
 �� '%R (5)� �
is the Goldberg number, � is the boundary layer

coefficient � � S B ��T �VU ? = � ; 9 (6)

S �XW YJ B ��[Z � �]\ � �U ^`_ba 9 (7)T �
is the resonator radius, Y is the kinematic viscos-

ity coefficient, \ is the adiabatic exponent,
^c_

is the
Prandtl’s number. The fractional derivative can be ex-
pressed as� ��Dd $ 
 '��
e�� � �U f gME�h � d $ 
� '��
 � d


i�U 
 � 
 � R (8)
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� � are the amplitudes of active suppression harmonics,& � are the amplitudes of selective absorption harmon-
ics.

We can write for an acoustic velocity

= � = C � = E 9 (9)

Eq. (1) is valid for angular eigenfrequencies
? � ? �

that ? � � 0 f B �& 9 0 � � 9 J 9kj)9 RlRlRmR (10)

In the case that we consider the harmonic excitation of
the standing waves with the piston at the position F �& , we can express the boundary and initial conditions
as follows

= � $ = C � = E 'onV � �qp 9 = � $ @ �qp ' �qp 9 (11)

= � $ = C � = E ' nV mr � ���I #" = � (+*Q, $ 0 ?A@ �32 � ' 9 (12)

where = � are acoustic velocity amplitudes of the piston
and 2 � are the phase shifts. We assume that a piston
vibrates with the angular frequency

?
which is equal

to $ J 0 � � ' -th eigenfrequency of the given resonator,
it means that

? � ? � � C " . This assumption causes that
higher harmonic components of an acoustic velocity are
in coincidence

Results
In this section we deal with comparison between the

solutions of eq. (1) taking into account the active sup-
pression of the second harmonic and the selective ab-
sorption in the second harmonic. The inhomogeneous
Burgers equation (1) was solved by means of the stan-
dard Runge-Kutta method of the fourth order in the
frequency domain (the first 100 harmonics were used).
The numerical oscillations were damped bys � � (+*-, $ 0>tu'0>t 9

(13)

where t is the frequency damping coefficient. Each
harmonic was multiplied by the coefficient

s � . It
causes the additional artificial attenuation of the solu-
tion. The value t was chosen so that the numerical
oscillations practically did not arise.

The results are calculated for
� �

=1000, � �Gp R p � ,� �wv!pIp .
The calculation with no attenuation is made with pa-

rameters x =1,
� " =1, & " =0, 2 4 "o6� =0, Taking into ac-

count the active suppression of the second harmonic the
parameters were x =2,

� " =1,
� �zy p , & " � & � �8p ,254 "o6� �{p , 254 � 6� � f

. To describe the selective ab-
sorption in the second harmonic, we set x =2,

� " =1,� � �wp & " �qp , & � y p , 2 4 "o6� �wp , 2 4 � 6� � f .
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Figure 1: Time development of the first harmonic of
velocity. Comparison of the solution with no

attenuation (solid line), with active suppression
(dashed line), and with the selective absorption

(dashed-dotted line).
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Figure 2: Time development of the second harmonic
of velocity. Comparison of the solution with no
attenuation (solid line), with active suppression
(dashed line), and with the selective absorption

(dashed-dotted line).

The first set of figures 1-5 is made for
� � � �

,� � =20, whereas the second set of figures 6-10 is made
for
� � � J v , � � =500.

We see that the energy transfer from the fundamen-
tal harmonics into higher ones is reduced and the ”sub-
harmonic” is generated. For this reason the acoustic
saturation effects are also suppressed. The suppression
of acoustic saturation causes both the amplitude of the
steady-state wave and

�
-factor increases. The higher�

-factor means that more acoustic energy is accumu-
lated in the resonators. The effect of active suppression
of the second harmonic is similar to the selective ab-
sorption in the second harmonic. Form the numerical
results it is evident, that the effect of active suppression
of the second harmonic is much more significant.
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Figure 3: Time development of the third harmonic of
velocity. Comparison of the solution with no

attenuation (solid line), with active suppression
(dashed line), and with the selective absorption

(dashed-dotted line).
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Figure 4: Time development of the fourth harmonic
of velocity. Comparison of the solution with no
attenuation (solid line), with active suppression
(dashed line), and with the selective absorption

(dashed-dotted line).
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Figure 5: Time evolution of velocity. Comparison of
the solution with no attenuation (solid line), with active

suppression (dashed line), and with the selective
absorption (dashed-dotted line).
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Figure 6: Time development of the first harmonic of
velocity. Comparison of the solution with no

attenuation (solid line), with active suppression
(dashed line), and with the selective absorption

(dashed-dotted line).
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Figure 7: Time development of the second harmonic
of velocity. Comparison of the solution with no
attenuation (solid line), with active suppression
(dashed line), and with the selective absorption

(dashed-dotted line).
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Figure 8: Time development of the third harmonic of
velocity. Comparison of the solution with no

attenuation (solid line), with active suppression
(dashed line), and with the selective absorption

(dashed-dotted line).
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Figure 9: Time development of the fourth harmonic
of velocity. Comparison of the solution with no
attenuation (solid line), with active suppression
(dashed line), and with the selective absorption

(dashed-dotted line).
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Figure 10: Time evolution of velocity. Comparison of
the solution with no attenuation (solid line), with active

suppression (dashed line), and with the selective
absorption (dashed-dotted line).
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