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Abstract
A new 4D Space-Time-Wave Number-Frequency
representation  Z(x,tk,w) is propcsed. This

representation is an extenson aong the time
dimension d the SpaceWave Number-Frequency
representation. The Z(X,tk,w) representation is
obtained by Short Time- Short Space 2D Fourier
transforming the spacetime signal collection. The
Z(x,t,k,0) representation is used to experimentaly
investigate Lamb wave propagation along a finite
plane plate immersed in water. The spacetime signal
collection is recorded along the propagation drection
using a laser vibrometer. Both Lamb wave
propagation and conversion aspects are explored by
using the Z(x,tk,w) representation. Using the
appropriate dices of the Z(x,t,k,w) representation, the
complex wave numbers and the complex frequencies
are quantified, pointing out the propagation aspect.
One of the new features of the Z(xtk,w)
representation is to localize the Lamb waves in the
spacetime plane: for each Lamb wave, the mode
conversion and reflection sequence is unambiguously
reveded at the edges of the plate.

I ntroduction

The dm of this paper is to present new signa
processing methods that alow the analysis of Surface
Acoustic Waves (SAW) transient aspects in both time
and space dimension. On the one hand, the time-
frequency methods are efficient in localizing the
frequency comporents of a 1D time signa [1, 2]. On
the other hand the 2D Fourier transform of 2D space-
time signals collections are very cgpable of extrading
the propagation aspects involved in, but not of
locating them in the space and time dimensions [3-
12]. The methods proposed here are a fusion of bath
methods, extending the time-frequency methodto 2D
signals and leading to the Space Time-Wave number-
Frequency representation Z(x,t,k,w).
Space-time-wave number-frequency Z(x,t,k,w)
methods

Let's consider awave propagating in a medium. For
a one dimensional propagation along the x direction,
the space-time collection s(x, t) is two dimensional
(2D). Following the Fourier diamond (Fig. 1), by
Fourier transforming s(x, t), three other spaces can be
deduced from:
- S(x, f), the time Fourier transform of s(x, t),
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- N(K, t), the space Fourier transform of g(x, t) and
- Ksi(k, f), the 2D Fourier transform of (X, t) along
the space and time dimensions.
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Figure 1 : Signal processing scheme.

These 3 spaces have interesting properties for wave
propagation identification. The 2D Fourier transform
of s(x, t) can be used to quantify, a posteriori, the
waves properties, like their attenuation and phase
velocity. However these existing methods suppose
that each wave defined by its (k, w) coordinates can
occur only one time in the x-t plane: individua
components of multiple generation are not separable
by such classical methods. A way to separate these
components is to use a small enough space and time
Field Of View (FOV) before Fourier transforming.

The Space Time-Wave number-Frequency
representation Z(x, t, k, w) can be obtained through
several equivalent paths. The first possible method is
the straightforward extension of the time frequency
methods to two dimensional signals: a small 2D
window dides along the time and space dimensions,
and the corresponding 2D spectrums Ksi(k, w) are
stacked, leading to the Z(x, t, k, w) representation.
However, this method needs a huge amount of
computer resources to be computed and the resulting
Z(x, t, k, w) representation is not easily readable from
aphysical point of view.

Instead of achieving it in one step, the space and time
localisation is achieved in two successive steps. This
scheme is much more readable and less memory
consuming. This second method uses the physical fact
that energy is aways spent, through the time
dimension, from minus infinity to plus infinity,
whereas, through the space dimensions, both
directions are used. In addition, as the s(x, t)
collection is real valued, loosing the negative
frequencies that correspond to propagation towards
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negative time, ore can orient the space propagation
and separate positive wave numbers from negative
ones. Thisisthe goal of following the path (1), (2) (3),
instead of the path (A) in figure 1. The obtained Wave
number- Time representation N(k,t) is then wave
number oriented and the waves propagating along
increasing X are separated from the one propagating in
the opposite direction. The Short Time Sliding Fourier
Transform (t-SFT) can now be gplied to N(k,t) along
the time dimension (Step 4). The 3D NN(k,t,w)
representation alows the locdization o the Wave
Number-Frequency (k, w) aspect through time, but
still not through space. The eergy locdisation
through spaceis then dore by the two following steps:

(5 NN(ktw) is ®nt badk to the space
dimension by inverse space Fourier transform, leading
to an intermediate SpaceTime-Frequency
representation ss(x,t,w),

(6) the Z(x,tk,w) representation is the Short
Space Sliding Fourier Transform (x-SFT) of the
sqx,t,w) representation.
The advantage of using this path is that the steps (5)
and (6) can be performed for an arbitrary set of
selected frequencies instead of the whale frequency
range. For example, as NN(k,t,w) needs abou 400MB
of memory to be stored in the computer, using 128
spacepoints would use 128 times 400MB of memory,
whereas for a unique constant frequency 0,
NN(k,t,w0) is 2D and Z(x,t,k,w0) is a 3D cube that
can be diced and easily imaged as a time succession
of SpaceWave Number (X, k) images or as a video
sequence that can be directly stored onthe hard drive
of the computer.

Lamb wave propagation and mode conversion:
Experimental study.
Experimental setup

The propagation of the surface waves is
investigated on a plane plate (length L=60 mm and
thickness e=2mm). The experimental setup shown in
Fig. 2 is used to generate and detect the surface
waves along their propagation along the shell.

Glass tank

Emitter (2.25MHz)

Plane plate

Translation

Laser
Vibrometer

Figure 2 : Experimenta setup.
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The plate is immersed in a water tank. A pulse of
0.1us long with 200V of amplitude is sent to a
broadband transducer (1 MHz). In the enlightened
zone of the plate, the plane buk wave generates Lamb
waves that propagate along the plate. A Polytec laser
vibrometer is used for the vibration measurement.

The spacetime signa collection (X, t) is presented
in Fig. 3. The incidence angle used is 13°. Severa
surface waves are generated, mainly by the edges of
the plate (x=0 and x=L).

Time

Space

Figure 3: Spacetime allection g(x, t).

Z(x, t, k, w) analysis

Following the scheme presented in Fig. 1,the Z(x, t,
k, w0) analysis is performed on the space time
collection s(x, t). The corresponding snapshots
presented are presented in Figure 4.

Figure4: Z(x, t, k, w) analysis.

The seleded frequency is 1MHz, and the time
increases from left to right (from C1 to C13). From
C1 to C3, the incident bulk wave passes trough the
plate with an incident wave number equal to the one
of the soundin water projeded onthe plate with the
incidence angle. One can note that the Scholte like A-



wave(+) is generated alittle bit later and propagates at
a dower speal from C2 to C13[13, 14. Due to the
experimental geometry chosen, bah waves propagates
in the positive direction of propagation, from x=0 to
x=L. One can nae that the A-wave(+) is generated at
the adge x=0 and propagates without attenuation till
the other extremity, as predicted by the theory.

On the C4 dice the incident bulk wave reades the
seaond edge of the plate (x=L) and converts itself in
three bad propagating modes: a A-wave(-), and two
Lamb modes SO(-) and AO(-). These 2 last modes are
highly attenuated and can hardly read the other side
of the plate at x=0.

Conclusion

A new 4D gspacetime-wave number-frequency
representation Z(x, t, k, w0) has been presented. This
method is very cgpable of locating through the space
and time dimensions the aoustic phonas by using
the broadband experimental signals.

The 4D method has been successfully applied for
the eperimental study of wave propagation and
conversion on a plane plate. Both the time and space
transient aspect of wave generation, reflection and
transmisson have been dbserved. The representation
also allows the analysis of the signal shape through
time and space
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