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Abstract 
   A new 4D Space-Time-Wave Number-Frequency 
representation Z(x,t,k,ω) is proposed. This 
representation is an extension along the time 
dimension of the Space-Wave Number-Frequency 
representation. The Z(x,t,k,ω) representation is 
obtained by Short Time- Short Space 2D Fourier 
transforming the space-time signal collection. The 
Z(x,t,k,ω) representation is used to experimentally 
investigate Lamb wave propagation along a finite 
plane plate immersed in water. The space-time signal 
collection is recorded along the propagation direction 
using a laser vibrometer. Both Lamb wave 
propagation and conversion aspects are explored by 
using the Z(x,t,k,ω) representation. Using the 
appropriate sli ces of the Z(x,t,k,ω) representation, the 
complex wave numbers and the complex frequencies 
are quantified, pointing out the propagation aspect. 
One of the new features of the Z(x,t,k,ω) 
representation is to localize the Lamb waves in the 
space-time plane: for each Lamb wave, the mode 
conversion and reflection sequence is unambiguously 
revealed at the edges of the plate.  
 
Introduction 
   The aim of this paper is to present new signal 
processing methods that allow the analysis of Surface 
Acoustic Waves (SAW) transient aspects in both time 
and space dimension. On the one hand, the time-
frequency methods are eff icient in localizing the 
frequency components of a 1D time signal [1, 2]. On 
the other hand the 2D Fourier transform of 2D space-
time signals collections are very capable of extracting 
the propagation aspects involved in, but not of 
locating them in the space and time dimensions [3-
12]. The methods proposed here are a fusion of both 
methods, extending the time-frequency method to 2D 
signals and leading to the Space Time-Wave number-
Frequency representation Z(x,t,k,ω). 
 
Space-time-wave number-frequency Z(x,t,k,ωω) 
methods 
   Let’s consider a wave propagating in a medium. For 
a one dimensional propagation along the x direction, 
the space-time collection s(x, t) is two dimensional 
(2D). Following the Fourier diamond (Fig. 1), by 
Fourier transforming s(x, t), three other spaces can be 
deduced from:  
- S(x, f), the time Fourier transform of s(x, t), 

- N(k, t), the space Fourier transform of s(x, t) and  
- Ksi(k, f), the 2D Fourier transform of s(x, t) along 
the space and time dimensions. 

Figure 1 : Signal processing scheme. 
 
   These 3 spaces have interesting properties for wave 
propagation identification. The 2D Fourier transform 
of s(x, t) can be used to quantify, a posteriori, the 
waves properties, like their attenuation and phase 
velocity. However these existing methods suppose 
that each wave defined by its (k, ω) coordinates can 
occur only one time in the x-t plane: individual 
components of multiple generation are not separable 
by such classical methods. A way to separate these 
components is to use a small enough space and time 
Field Of View (FOV) before Fourier transforming. 
   The Space Time-Wave number-Frequency 
representation Z(x, t, k, ω) can be obtained through 
several equivalent paths. The first possible method is 
the straightforward extension of the time frequency 
methods to two dimensional signals: a small 2D 
window slides along the time and space dimensions, 
and the corresponding 2D spectrums Ksi(k, ω) are 
stacked, leading to the Z(x, t, k, ω) representation. 
However, this method needs a huge amount of 
computer resources to be computed and the resulting 
Z(x, t, k, ω) representation is not easily readable from 
a physical point of view. 
Instead of achieving it in one step, the space and time 
localisation is achieved in two successive steps. This 
scheme is much more readable and less memory 
consuming. This second method uses the physical fact 
that energy is always spent, through the time 
dimension, from minus infinity to plus infinity, 
whereas, through the space dimensions, both 
directions are used. In addition, as the s(x, t) 
collection is real valued, loosing the negative 
frequencies that correspond to propagation towards 
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negative time, one can orient the space propagation 
and separate positive wave numbers from negative 
ones. This is the goal of following the path (1), (2) (3), 
instead of the path (A) in figure 1. The obtained Wave 
number- Time representation N(k,t) is then wave 
number oriented and the waves propagating along 
increasing x are separated from the one propagating in 
the opposite direction. The Short Time Sliding Fourier 
Transform (t-SFT) can now be applied to N(k,t) along 
the time dimension (Step 4). The 3D NN(k,t,ω) 
representation allows the localization of the Wave 
Number-Frequency (k, ω) aspect through time, but 
still not through space. The energy localisation 
through space is then done by the two following steps: 

(5) NN(k,t,ω) is sent back to the space 
dimension by inverse space Fourier transform, leading 
to an intermediate Space-Time-Frequency 
representation ss(x,t,ω), 

(6) the Z(x,t,k,ω) representation is the Short 
Space Sliding Fourier Transform (x-SFT) of the 
ss(x,t,ω) representation.  
The advantage of using this path is that the steps (5) 
and (6) can be performed for an arbitrary set of 
selected frequencies instead of the whole frequency 
range. For example, as NN(k,t,ω) needs about 400MB 
of memory to be stored in the computer, using 128 
space points would use 128 times 400MB of memory, 
whereas for a unique constant frequency ω0, 
NN(k,t,ω0) is 2D and Z(x,t,k,ω0) is a 3D cube that 
can be sliced and easily imaged as a time succession 
of Space-Wave Number (x, k) images or as a video 
sequence that can be directly stored on the hard drive 
of the computer. 
 
Lamb wave propagation and mode conversion: 
Experimental study. 
Experimental setup 
   The propagation of the surface waves is 
investigated on a plane plate (length L=60 mm and 
thickness e=2mm). The experimental setup shown in 
Fig. 2 is used to generate and detect the surface 
waves along their propagation along the shell. 

 
Figure 2 : Experimental setup. 

The plate is immersed in a water tank. A pulse of 
0.1µs long with 200V of ampli tude is sent to a 
broadband transducer (1 MHz). In the enlightened 
zone of the plate, the plane bulk wave generates Lamb 
waves that propagate along the plate. A Polytec laser 
vibrometer is used for the vibration measurement. 
   The space time signal collection s(x, t) is presented 
in Fig. 3. The incidence angle used is 13°. Several 
surface waves are generated, mainly by the edges of 
the plate (x=0 and x=L). 

Figure 3 : Space time collection s(x, t). 
 
Z(x, t, k, ω) analysis 
   Following the scheme presented in Fig. 1, the Z(x, t, 
k, ω0) analysis is performed on the space time 
collection s(x, t). The corresponding snapshots 
presented are presented in Figure 4.  

 
The selected frequency is 1MHz, and the time 
increases from left to right (from C1 to C13). From 
C1 to C3, the incident bulk wave passes trough the 
plate with an incident wave number equal to the one 
of the sound in water projected on the plate with the 
incidence angle. One can note that the Scholte li ke A-

 

Figure 4 : Z(x, t, k, ω) analysis. 
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wave(+) is generated a little bit later and propagates at 
a slower speed from C2 to C13 [13, 14]. Due to the 
experimental geometry chosen, both waves propagates 
in the positive direction of propagation, from x=0 to 
x=L. One can note that the A-wave(+) is generated at 
the edge x=0 and propagates without attenuation till 
the other extremity, as predicted by the theory. 
On the C4 slice, the incident bulk wave reaches the 
second edge of the plate (x=L) and converts itself in 
three back propagating modes: a A-wave(-), and two 
Lamb modes S0(-) and A0(-). These 2 last modes are 
highly attenuated and can hardly reach the other side 
of the plate at x=0. 
 
Conclusion 
   A new 4D space-time-wave number-frequency 
representation Z(x, t, k, ω0) has been presented. This 
method is very capable of locating through the space 
and time dimensions the acoustic phonons by using 
the broadband experimental signals. 
   The 4D method has been successfully applied for 
the experimental study of wave propagation and 
conversion on a plane plate. Both the time and space 
transient aspect of wave generation, reflection and 
transmission have been observed. The representation 
also allows the analysis of the signal shape through 
time and space.  
 
Acknowledgements 
   The authors are grateful to Dr. Yannick Eudeline for 
performing the signal acquisition. 
 
References 
[1] T.A.C.M. Claasen, W.F.G Mecklenbraüker, 
Phillips journal of research, 35 (3), pp. 217-250, 1980. 
[2] T.A.C.M. Claasen, W.F.G Mecklenbraüker, 
Phillips journal of research, 35 (6), pp. 373-389, 1980. 
[3] G. Bonnet, Ann. Télécom, 38 n° 9-10, pp. 1-22, 
1983. 
[4] G. Bonnet, Ann. Télécom., 38 n° 11-12, pp. 1-17, 
1983. 
[5] D. Alleyne, P.Cawley, J. Acoust. Soc. Am., 89(3), 
pp. 1159-1168, 1991.  
[6] J. Vollmann, J. Dual, J. Acoust. Soc. Am., 102, pp. 
896-908, 1997. 
[7] J. Vollmann, J. Dual, J. Acoust. Soc. Am., 102, 
909-920, 1997. 
[8] L. Martinez in New surface wave analysis 
methods. A-wave propagation on a curved plate, PhD 
Thesis, Université du Havre, France, 1998. 
[9] L. Martinez, J. Duclos, A. Tinel, J. Acoust. Soc. 
Am., pp. 103, 2901, 1998. 
[10] J. I. Salisbury, J. Acoust. Soc. Am., 106(3), pp. 
1602-1604, 1999. 
[11] L. Martinez, J. Duclos, A. Tinel, J. Acoust. Soc. 
Am. 105, pp. 952, 1999. 

[12] L. Martinez, A. Tinel, J. Duclos, in the 
Proceedings of the 5th European Conference on 
Underwater Acoustics, Lyon, France, pp. 899-904, 
2000. 
[13] Y. Eudeline, H. Duflo, L. Martinez, J.-L. Izbicki, 
J. Duclos, in the Proceedings of the 4th European 
Conference on Underwater Acoustics, CNR-IDAC, 
Rome, Italy, Vol. 2, pp. 867-872, 1998. 
[14] L. Martinez, J. Duclos, A. Tinel, Acoustics 
Letters, 20 n°6, pp. 111-120, 1996. 
 

WCU 2003, Paris, september 7-10, 2003

1469


