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Abstract 
   A multiscale approach is proposed to predict the 
macroscopic amplitude dependent (i.e. nonlinear) 
behavior of the resonant mode response of a micro-
inhomogeneous medium. To this extent, we assume 
that the mechanics of micro-inhomogeneities can be 
modeled by a two-step nonlinear hysteretic stress-
strain relation at the microscopic level. At an 
intermediate scale (the mesoscopic scale) we calculate 
the equation of state using the well known Preisach-
Mayergoysz (PM-space) model. Finally, upscaling to 
the macroscopic level is achieved by establishing a 
staggered grid formalism in space and time. Localized 
microdamage features in an intact medium are 
modeled by conceiving finite zones with pronounced 
hysteretic stress-strain relations within a “linear” 
surrounding.  The simulations show a significant 
influence of the amplitude dependent resonance 
behavior on the location (edge versus center of a bar), 
the extend (width of the zone) and the degree (density 
of hysteretic units) of damage. Simple examples are 
given that illustrate the effects of thresholding and 
saturation of nonlinearity. 
 
Introduction 
   One dimensional wave propagation and wave 
resonance in media with homogeneous distributions of 
elementary nonlinear and hysteretic units (interface 
contacts, cracks, weakened adhesion, etc) have been 
extensively described in the past by several groups [1-
5]. When dealing with problems of wave propagation 
in media with non-uniform distributions of material 
properties, it becomes unavoidable to develop and 
apply appropriate numerical procedures.  This has 
been performed successfully for the case of non-
uniform linear material properties distributions [6-8] 
and is nowadays available in several commercial 
software packages. In the case of (hysteretic) 
nonlinear material properties, distributed non-
uniformly over a sample, there has been no reports to 
our knowledge that deal with wave propagation or 
resonance. However, this topic is of particular interest 
in the field of non-destructive testing, since it is 
critical to the understanding of the macroscopic 
nonlinear behavior of materials with localized 
damage. Besides, an appropriate simulation model can 
be used as the basis for establishing sensitive 
nonlinear imaging techniques. 
 
 

Numerical Multiscale Nonlinear Model 
   The modeling of damage features in a material 
requires the introduction of locally nonlinear and non-
unique equations of state. In order to account for these 
local properties, we introduce the multiscale concept 
that is illustrated in Figure 1. An object (macroscopic 
level M) is divided into a number of mesoscopic 
(level m) material cells. Each mesoscopic cell is 
thought of as being composed of a statistical ensemble 
of microscopic units (level µ) with varying properties 
defining their mechanical stress-strain relation. These 
microscopic units represent the grains and the 
complex contacts between individual grains. Length 
scales associated to each level are of the order 0.1-1 m 
for the macroscopic level, 1-10 mm for the 
mesoscopic level and 1-100 µm for the microscopic 
scale.  

 
 

Figure 1: The Multiscale concept 
 
   At the microscale level, the strain response of the 
individual units is modeled through a combination of 
a classical nonlinear state relation, and a non-classical 
addition because of hysteresis effects (i.e. non-
uniqueness in the stress-strain behavior): ε=εC +εH. 
The classical strain component εC can be linked to the 
traditional nonlinear powerlaw relation between stress 
(σ) and strain (ε), as being used for describing 
nonlinearity in liquids and single crystals. However in 
this paper we focus on non-classical nonlinearity and 
therefore we assume that the classical contribution to 
the strain response reduces to the Hooke’s law: 
εC =σ/K, with K the modulus. The hysteretic strain 
component, εH, arises from the following basic idea of 
crack opening and closure: For increasing stress, the 
strain contribution is zero for σ<σc (“open” state), and 
γ for  σ>σc (“closed” state). For decreasing stress, the 
strain contribution equals γ for σ>σο  (“closed” state) 
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and zero for σ<σο (“open” state). Here, σc>σο. For 
simplicity we assume that only the parameters σο and 
σc can vary from microscopic unit to microscopic unit. 
When looking at all microscopic units within a 
material cell, we assume that all other parameters 
remain constant, i.e., K and γ are “effective” material 
cell constants which are defined at the mesoscopic 
level. The collection of all units within a material cell 
can be represented in a stress-stress space according to 
their values σc and σο, commonly termed the “PM-
space”, and mathematically represented by its density 
distribution ρPM(σc ,σο,) [9-11]. In this way, the two 
effective material constants, K and γ, together with the 
particular PM-space density form a unique character-
istic of the material cell. This ID obviously may differ 
from cell to cell. For instance, the PM-space 
distribution of a linear material cell is empty (or 
equivalently: γ=0), the PM-space of a damaged cell 
has a non-zero value for γ and a non-zero density. 
Some simple distributions of PM-spaces are shown in 
figure 2, in which we depicted a uniform PM-space, 
an offset-ed PM space, a finite banded PM-space and 
a localized PM-space. In each subfigure we assume 
that the gray areas correspond to uniform but non-zero 
densities.  

 
 

Figure 2: Mesoscopic level PM-space distributions 
 
The mesoscopic stress-strain relation of each material 
cell can be calculated from the incremental form of 
the relationship between the stress increase/decrease 
from σ1 to σ2 and its corresponding strain response 
[12]: 
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with fc(σi) for i=1,2 the fraction of microscopic units 
within the material cell which are in a “closed” state at 
the stress σi. It is important to realize that this function 
is highly dependent on the stress history, σhis. 
The up-scaling from mesoscopic level to macroscopic 
level is based on the formalism of EFIT 
(Elastodynamic Finite Integration Technique), which 
was originally developed by Fellinger et al.[6-8]. The 
formalism uses a velocity-stress discretisation of the 
equation of motion and of the rate formulation of the 
above specified equation of state. In 1D, the 
discretised equations of the EFIT code are similar to 
those of a Finite Difference Time Domain (FDTD) 

scheme on a staggered temporal and spatial grid. 
Particular care must be taken in the handling of the 
discretised rate formulation of the equation of state, 
since it involves the derivative of the function fc(σ) 
with respect to σ, which represents the change in the 
fraction of the PM-space area occupied by closed 
units for a infinitesimal change of σ. This quantity is 
highly dependent on the previous history of the stress. 
 
Simulations 
   In the simulations, we assume a 1D cylindrical bar 
of a fictitious material with modulus K=10 GPa, 
material density ρ=2600 kg/m3, inverse attenuation (or 
quality factor) Q=80, and length L=0.25 m. To 
perform the simulations we assume an initial 
condition of rest and a continuous sinusoidal forcing 
F sin(2πft) at the boundary (x=0). For each forcing 
amplitude (F) and excitation frequency (f), the 
numerical multiscale model calculates the distribution 
of stress and velocity over the bar at each step in time, 
and stores the Fourier components of the steady state 
velocity response at x=L of the sample after 5Q 
cycles. The frequency is swept in discrete steps 
around the fundamental longitudinal resonance 
frequency of the cylindrical bar. This allows us to 
analyze (fundamental and harmonic) resonance curves 
at various driving force, and to determine the peak 
coordinates of the resonance line at each forcing level. 
The peak amplitude can be easily converted in the 
maximal strain response amplitude ε1r(F) for the given 
forcing F, the peak frequency is the resonance 
frequency fr(F) of the system at that forcing. From this 
analysis, we determine the relative changes in the 
resonance frequency (i.e. (fr(F0)- fr(F)) / fr(F0) = ∆fr(F) 
/ fr(F0) with F0 an extremely small value yielding the 
linear resonance frequency) as a function of the peak 
strain amplitude ε1r(F) measured at the same forcing, 
The resultant dependence relation quantifies the effect 
of hysteresis and nonlinearity on the modulus. In 
addition we also determine the strain amplitude of the 
third harmonic ε3r(F) at the resonance frequency fr(F) 
for the different forcing values (even harmonics are 
not created in a purely hysteretic medium), and 
analyze these values against the peak strain amplitude 
ε1r(F) of the fundamental component in the response. 
Doing so, we quantify the effect of hysteresis and 
nonlinearity on the generation of harmonics. 
   At first, we have checked and confirmed the usual 
dependencies which are expected in the case of 
identical material cells (mesoscopic level), with 
uniform PM-spaces (i.e. uniform distributions of 
microscopic units over the σo-σc space): 1) Both the 
resonance frequency and the quality factor diminish 
linearly with the fundamental strain response 
amplitude (i.e. ∆fr(F) / fr(F0) = αf ε1r(F), and ∆Q(F) / 
Q(F0) = αQ ε1r(F) ); 2) The third and all higher odd 
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harmonics in the strain response depend quadratically 
on the fundamental strain response amplitude (i.e. 
ε3r(F) = α3 (ε1r(F))2, etc.); 3) the proportionality 
coefficients in all of these relations are increasing 
linearly with the value of the hysteretic strength γ. 
   To model the effects of local damage features in a 
material, we have introduced finite zones with 
pronounced hysteretic stress-strain relations within a 
“linear” surrounding. In the following, we illustrate 
the influence of the localization, the extend and the 
nature of damage by varying the position of the 
hysteretic zone, the width of the zone and the PM-
space distribution of one or more mesoscopic cells.  
   We first investigate the nonlinear parameter 
sensitivity variation with the position xd of a damage 
zone of width L/40. Inside the damaged zone, we 
assume a uniform PM-space distribution of hysteretic 
units. All other material cells are considered to be 
purely linear. The numerical results and their 
subsequent analysis showed that the above mentioned 
dependence relation for resonant frequency shift and 
third harmonic are still maintained. At each position 
xd of the damage, we determined αf and α3, and the 
results are shown in Figure 3. Obviously the 
dependence of the resonance frequency shift on the 
response amplitude, and the quadratic dependence of 
the third harmonic are both highly influenced by the 
position of the hysteretic nonlinear material cell 
within the bar. Since the strain of the first longitudinal 
mode is largest in the center of the bar and zero at the 
edges, it is no surprise that the sensitivity will be 
largest when damage is situated in the center of the 
sample, and that there is almost no sensitivity to 
damage at the edges. An analytical model, developed 
by Windels and Van Den Abeele [13] and applied to 
hysteretic stress-strain relations, confirms the position 
dependent sensitivity and explicitly predicts a 
(sin(πxd/L))3 behavior (full line in the top plot of 
Figure 3). The variation of the third harmonic 
proportionality coefficient is somewhat more 
complicated and shows two zones of strongly reduced 
sensitivity. This is due to the highly structured shape 
of the strain pattern of the third fundamental 
resonance, which has two positions of zero strain. 
Here, the analytical model of Windels and Van Den 
Abeele predicts a (sin(πxd/L))2 sin(3πxd/L) behavior. 
This is illustrated by the full line in the bottom plot of 
Figure 3. Finally, it is important to note that this 
analysis predicts conditions for which there can be a 
resonance frequency shift without the observation of a 
third harmonic, e.g. when the damage is located at 
xd=L/3=0.083m. 
   The influence of the width of the damage zone on 
the proportionality coefficients αf and α3 is illustrated 
in Figure 4. Here, we have considered a finite damage 
zone of variable width, centered along the bar. Again, 
we assume a uniform distribution of hysteretic 

elements in the PM-spaces of the material cells that 
contain the damage. The width is increased from L/20 
(2 material cells containing damage) to L (all material 
cells containing damage). The fact that damage which 
is located at the bar edges does not influence the 
modulus reduction is clearly confirmed by the 
observed saturation of the coefficient αf. However, the 
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Figure 3: Nonlinearity sensitivity to damage position 
(Numerical model (open circles) and analytical 

prediction (full line)) 
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Figure 4: Nonlinearity sensitivity to damage width 
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extension of the damaged zone towards the bar edges 
reduces the rate at which the third harmonic increases 
with excitation. Indeed, once the damaged zone is 
larger than L/3 (and centered in the bar) the third 
harmonic generation diminishes. Apparently the 
nonlinearity is constructively accumulated for W<L/3, 
and interferes destructively (because of the anti-phase 
lobes of the third order resonance mode) when 
W>L/3. 
 

 

 
Figure 5: Thresholding effects in nonlinear behavior. 

 
   The degree of damage can be varied by playing with 
the parameter γ. However, it is also possible to 
investigate the influence of the microstructural units 
within the PM-space of each mesoscopic cell. These 
units can be uniformly distributed over the complete 
PM-space (figure 2a) or can be located at specific 
areas, for instance, only away from the diagonal in the 
σo-σc space or only near the diagonal, or in a restricted 
area (see Figure 2b-d). Figure 5 illustrates the 
influence of an increasing off-set in the distribution of 
the PM-space elements for all material cells in the 
macroscopic object. The resonance frequency shift 
versus strain amplitude and the third harmonic strains 
clearly show a threshold behavior at strains which 
closely correspond to the a priori assumed stress off-
sets (remember that K=10 GPa). On the other hand, it 
is not hard to understand that a finite band of 
uniformly distributed microscopic units adjacent to 
the diagonal will introduce a saturation effect of the 
nonlinear response, as is illustrated in Figure 6 for 
decreasing PM-space widths. Finally, a localized 
distribution of elements in the PM-space can 
introduce as well thresholding effects as saturation 

effects, which can disturb the traditional expectations 
of resonant frequency shifts to a large extent. 
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Figure 6: Saturation of nonlinearity 
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