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Abstract 

The incidence of prostate carcinoma is one of the 
highest cancer risks in men in the western world. Its 
position in cancer mortality statistics is also among 
the highest. The conventional types of diagnostics that 
are used today lack reliability and are therefore not 
sufficient when it comes to early detection of prostate 
cancer. 

Diagnosis of prostate carcinoma using multi-
feature tissue characterization in combination with 
ultrasound allows the detection of tumors at an early 
stage and thus can aid the conducting physician in 
finding a diagnosis. 

Spatially resolved parameters and contextual 
information extracted from radio frequency ultrasound 
data are used for the classification. Nonlinear classi-
fication is done by an adaptive neuro fuzzy inference 
system. Next to hypo- and hyperechoic tumors, also 
isoechoic tumors can be visualized. 

Volume reconstructions of malignant regions 
within the prostate capsule might improve biopsy gui-
dance and therapy planning. Volume renderings might 
also improve disease staging.  
 
Introduction 

Successful treatment of prostate cancer is only 
possible if tumors are diagnosed at an early stage. The 
recurrence rate of prostate cancer treated at later 
stages is high. The different types of diagnostics that 
are used today (digital rectal examination, transrectal 
ultrasound and PSA value analysis) lack reliability, 
even if used in combination, and are therefore not 
sufficient. Results of diagnostics using conventional 
B-mode ultrasound are highly dependent on the 
physician’s skills. Digital rectal examination might 
easily miss smaller tumors at deeper positions within 
the prostate. PSA values are dependent on several 
factors that are hard to comprise into diagnostics. 
Real-time strain imaging has not found wide 
acceptance yet and is so far only applied in certain 
clinics. 

Diagnosis of the prostate carcinoma using 
ultrasonic tissue characterization allows the detection 
of tumors at an early stage. Using adaptive neuro-
fuzzy inference systems as nonlinear classifiers can 

automate the process of finding prostate cancer and 
can therefore help closing the gap between different 
results of diagnostics between sophisticated and 
novice physicians using ultrasound as a diagnostic 
modality.   
 
Methods 

In the underlying system, radio-frequency ultra-
sonic echo data of the prostate is captured during the 
usual examination of the patient with standard 
ultrasound equipment (Kretz Combison 330, 7.5 MHz 
transrectal transducer). After amplification by a 
custom made hardware TGC (time gain control) the 
data is directly transmitted to a PC by ADC at 
33 MHz and subdivided into up to 1000 regions of 
interest (ROI) per prostate slice to yield spatially 
distributed classification results. The size of the ROIs 
used in this approach is 128 sample points at 16 lines 
with 75 % and 50 % overlap, respectively. The data is 
compensated for TGC amplification and for system 
induced effects using point spread functions measured 
at different depths. 

Several parameters describing the histological 
characteristics of the underlying tissue are calculated 
for each ROI and fed into two adaptive network-based 
fuzzy inference systems working in parallel. One 
system is used to classify hypo- and hyperechoic 
tumors, the other system is used to find isoechoic 
tumors within the normal prostate tissue. 

The systems are trained by using subtractive 
clustering as the first step followed by a backpropa-
gation algorithm. Following morphological analysis 
combines clusters to mark areas of similar tissue 
characteristics. It was found that the fuzzy inference 
systems underestimate the malignant areas, so mor-
phological post processing is used to compensate the 
effects of underestimation. Morphological post pro-
cessing is performed by two dimensional filtering of 
the output of the two fuzzy inference systems by 
previously determined filter kernels and cut off 
thresholds. 

The results of the two fuzzy inference systems are 
combined to build a malignancy map, which consists 
of a conventional B-mode ultrasound image in which 
areas of high cancer probability are marked in red. 
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The malignancy map can be presented to the 
physician during the examination on a PC screen. 
Volume renderings of the prostate can be calculated 
off-line for further diagnostics, setting up needle 
biopsies and therapy planning. 

 
Fourier based Spectrum parameters 

Spectrum parameters are calculated after applying 
a Hamming window to the TGC-compensated RF data 
of each ROI, computing the Fourier transform (FT) 
and converting the resultant power spectrum to dB. 
Spectral results of each scan line are averaged to form 
an estimate of the average power spectrum [1]. 

The primary set of spectrum parameters consists 
of four measures of backscatter calculated for the 
signal bandwidth. The parameters used in this ap-
proach are: slope, axis intercept, midband value, and 
square deviation of the linear regression spectrum fit 
[2, 3, 4, 5, 6, 7]. The measures of backscatter are 
compensated for attenuation effects using an 
attenuation model, which is based on the multi narrow 
band method [8, 9, 10]. Three measures of this 
attenuation model are also included in the system [4, 
6]. The attenuation parameters used in this approach 
are: slope, axis intercept and midband value. It has 
been shown earlier by Thijssen et al. [1] and 
Oosterveld et al. [9] that it is important for the calcu-
lation of attenuation parameters to exclude all ROIs 
with overflows, underflows or severe inhomogenei-
ties. ROIs containing these properties are being dis-
carded before calculation. Statistical frameworks for 
ultrasonic spectral parameter imaging have been pro-
posed by Huisman et al. [11] and Lizzi et al. [12]. 
 
Auto Regression based Spectrum Parameters 

If the spatial resolution of the malignancy maps 
plays an important role, as it does in this approach, 
because the goal is finding even small lesions within 
the prostate, there is a discrepancy between the 
accuracy of the feature estimations and the underlying 
size of the ROIs. On one side, as much data as 
possible is needed for an accurate parameter 
estimation, which demands large-size ROIs, on the 
other side, the resolution of the malignancy maps is 
wanted to be as high as possible to achieve fine 
resolved tumor areas and to keep the detectable lesion 
size as small as possible. 

It has been shown earlier, that the extraction of 
features based on the backscattered echo signal is a 
valuable tool for discriminating different tissue types 
[3-6]. In most cases this feature extraction is based on 
conventional Fourier transform to convert the 
underlying echo signals into the frequency domain 
and to calculate the power spectrum from which the 
features are extracted. 

When using Fourier transform, the underlying 
time series have to be windowed to cope with spectral 

leakage, which may occur when a rectangular window 
is used for sliding window technique. A typical 
window that is often used in this background is the 
Hamming window. During the windowing process, a 
certain amount of information is lost, due to the 
masking effect of the window. Because of this loss of 
information, it is advantageous to use techniques that 
bypass the windowing process. The most popular of 
these techniques that is used in the field of tissue 
characterization is the autoregressive (AR) analysis or 
system identification [13]. 

Next to auto regression parameters the order of the 
autoregressive process has to be determined. When 
both, the auto regression parameters and the order of 
the underlying process have to be determined, the task 
is called ‘system identification’. Some methods have 
been proposed to determine the order minimally 
needed to model the process sufficiently well. The 
straightforward method is to calculate the auto 
regression parameters for several orders and to 
compare the resultant impulse response with the 
original time series using an error measure like the 
mean square error (MSE) and deciding which MSE 
can be tolerated for the problem. Next to this 
straightforward approach, other analytical methods 
like the Akaike information criterion (AIC), the 
minimum description length (MDL) and the final 
prediction error (FPE) have been proposed to estimate 
the optimal order of the auto regressive process. All 
four methods have been applied on the underlying 
data in order to estimate the optimal order of the 
autoregressive process. The four estimates are 
visualized for different model orders in the following 
figures. 
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Figure 1: Four different methods for minimum order 
determination of AR models: mean square error (MSE), 
final prediction error (FPE), Akaike information criterion 
(AIC), and minimum description length (MDL). Minima 
are found between 15 and 18 depending on the method. 
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It is apparent, that both AIC and FPE lead to 
similar results, while MDL tends to give a slightly 
lower rate as model order estimate. The MSE is not 
easy to read, as the curve keeps on decreasing and no 
clear plateau is reached in this example. According to 
the estimations, a model order of 15 was chosen for 
the following calculations. 

Four auto regressive spectral parameters were 
calculated from the spectrum and from the linear 
regression spectrum fit: slope, intercept, mid band 
value and square deviation of the spectrum fit. 

The tissue characterization system described here 
is typically running on features extracted by Fourier 
transform [3-6]. For comparison with the conventional 
features, additional spectrum parameters were 
extracted by auto regressive models. Actually, auto-
regressive parameters are used for window sizes 
smaller than the 128 samples used in this approach. 
Nevertheless the performance of AR parameters in 
comparison with the conventional FT parameters 
should be examined. As the overall system is too 
complex to easily change the window length to values 
lower than 128 sample points and as the applied 
attenuation estimation and correction is based on 
larger window sizes, only a length of 128 samples was 
used. 

 
Results 

During the clinical study, radio-frequency ultra-
sonic echo data of 100 patients were recorded. 
Prostate slices with histological diagnosis following 
radical prostatectomies are used as the reference. The 
ROC curve area is A=0.86 for hypo- and hyperechoic 
tumors and A=0.84 for isoechoic tumors using leave-
one-out cross validation over patient datasets. 

Next to spectrum parameters, texture parameters 
of first and second order and morphological features 
are used in this approach. The complete parameter 
extraction procedure and the nonlinear classification 
engine are described in detail in [3-6]. No 
autoregressive parameters were used in the final 
calculations. AR parameters are only stated here for 
comparison. 

The results of the FT based parameters are 
displayed in Table 1. The performance of the AR 
based parameters is given in Table 2. For all 
parameters, the single classification results are given 
as the mean area under the ROC curve and its 
standard deviation for five fold cross validation over 
patients. Next to single classification results, the 
results of the fuzzy inference systems that have been 
trained on a combination of all four parameters are 
given. FIS 1 stands for the fuzzy inference system that 
was trained to distinguish between hypoechoic, 
hyperechoic tumors and normal tissue. The system 
that was trained to find isoechoic tumors within the 
prostate tissue is called FIS 2. 

Table 1: FT based spectrum parameter results 
 

FT-Parameters FIS 1 FIS 2 
 AZ σ AZ σ 
Axis intercept 0.590 0.014 0.550 0.014 
Slope 0.558 0.007 0.510 0.014 
Mid band value 0.622 0.015 0.558 0.032 
Square deviation 0.512 0.001 0.500 0.006 
Combination 0.658 0.005 0.574 0.027 

 
It can be seen, that the FT based parameters 

perform slightly better for hyper- and hypoechoic 
tumors, when only considering the mean value of the 
five fold cross validation results. For FIS 1 the 
standard deviation of the AR based parameters is 
about ten times larger than the standard deviation of 
the FT based parameters. Consequently, the use of FT 
parameters should be preferred. Taking a look at 
FIS 2, it is apparent, that both the mean classification 
rate and the standard deviation perform better for the 
AR based parameters, though the differences are only 
minimal. Interesting to know, the square deviation of 
FIS 1 is the same for both approaches, FT and AR. 
This indirectly proves the correct choice of model 
order, at least for FIS 1, though the standard deviation 
between the two approaches is different and the 
results of FIS 2 are slightly different as well.  

 
Table 2: AR based spectrum parameter results 

 
AR-Parameter FIS 1 FIS 2 
 AZ σ AZ σ 
Axis intercept 0.583 0.028 0.567 0.034 
Slope 0.592 0.046 0.550 0.060 
Mid band value 0.626 0.025 0.564 0.035 
Square deviation 0.512 0.016 0.527 0.015 
Combination 0.642 0.049 0.577 0.020 
 

The following figures show typical volume 
reconstructions of malignant areas within the prostate 
capsule. The whole organ is shown yellow while areas 
of a high cancer probability are colored red. The 
volumes are reconstructed using two dimensional 
datasets, which were recorded at defined positions 
within the prostate. The volumes shown here were 
reconstructed from 15 data slices. 

  

 
Figure 2: Typical volume reconstruction of tumor within 

prostate capsule at variable angles. 
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The volume renderings can aid in the planning of 
needle biopsies. Reduced amounts of needle cores and 
improved placing might be possible. Next to needle 
biopsies, the volumetric presentation can help plan-
ning therapies, like Brachy therapy, thermo therapy 
and HIFU therapy (high intensity focused ultrasound), 
which aim at local malignant areas and not at the 
whole organ like conventional prostatectomy. For 
local therapies, the exact position and border of the 
tumors are necessary. This information is made 
available by multifeature tissue characterization.   

   

 
Figure 3: Typical volume reconstruction of tumor within 

prostate capsule at variable angles. 
 

Conclusion 
Classification results of AZ=0.86 for hypo- and 

hyperechoic tumors and AZ=0.84 for isoechoic tumors 
using leave-one-out cross validation over patient 
datasets prove the ability of the described system to 
improve the early detection of prostate cancer. 

Biopsy and therapy planning can be improved. By 
using volume reconstructions of malignant regions 
within the prostate capsule even the staging of the 
disease might be improved. 

It was shown that the use of auto regressive 
models instead of conventional Fourier transform 
cannot significantly improve the classification rates 
when classifying the underlying prostate tissue and 
using time series or window lengths of 128 sample 
points. 
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