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Abstract

A model base on the combination of finite element
analysis and boundary element method is presented to
address the problem of periodic transducers radiating
in stratified media mixing fluids and solids. The
mathematic principle of the computation is described,
and numerical results are reported for standard 2 and
3D transducers as well as micromachined ultrasonic
transducers (MUT).

Introduction

Ultrasound arrays for medical imaging applications
are mainly based on composite structures associating
materials of wvarious acoustical properties. The
actuation principle generally consists in the vibration
of a PZT ridge glued on a backing, with one or two
matching layers covered by a mylar and eventually an
acoustic lens. These transducers may exhibit up to 192
single transducers for 1D probes or more than 64x64
transducers for 2D devices devoted to 3D imaging.
Devices based on piezocomposite have also been
introduced to improve the characteristics of classical
acoustic probes, and the new concept of
Micromachined Ultrasound Transducer (MUT) gives
rise to new opportunities in the development of high
density integrated imaging devices.

The design of these transducers requires powerful and
flexible tools, able to accurately simulate complex
combinations of materials exhibiting acoustic and
dielectric losses, with a reliable representation of
acoustic radiation in semi-infinite fluids or in stratified
radiation media. Furthermore, the periodicity of the
probes has to be taken into account to correctly predict
their capability to convert bulk vibrations into acoustic
radiation, avoiding any parasitic effects due to wave
guiding along the array. The proposed paper is
devoted to the development of a computation tool
based on a finite element analysis (FEA) and a
boundary element method (BEM) to address these
problems. A very classical mechanical displacement —
electrical potential formulation has been first
implemented as a starting base of further
developments. It is based on an harmonic analysis of
the admittance (or impedance) of any piezoelectric
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transducer. It was then associated with boundary
element techniques to simulate acoustic radiation in
different media assuming plane interfaces. Periodicity
has been taken into account using a standard periodic
finite element approach and Bloch-Floquet
developments for the radiation medium. In the first
section of the paper, the basic periodic FEA
formulation is recalled. The associated BEM approach
is then reported. Computation results are then
presented for different kinds of piezoelectric
ultrasound transducers to illustrate the efficiency of
the proposed approach. It is particularly shown how to
use these computations to predict cross talk effects in
periodic structures radiating in water. Further
developments of the proposed work are discussed in
conclusion.

Fundamentals of the model

The developments of finite elements calculations to
address piezoelectricity problems have been widely
reported in many articles (see for instance ref. [1]).
The one adopted for the present work relies on a
mechanical displacement and electrical potential
formulation and only the final form of the problem is
recalled here. Let us consider an elementary cell of a
quasi-periodic transducer which geometry conforms to
the representation of fig.1.
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Fig. 1 Definition of an elementary cell of an infinite
periodic array of transducer
One of the boundary conditions consists in the
electrical excitation of the piezoelectric layer, which is
assumed to be governed by an harmonic relation [2] as
follows :
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b = e/ ()
which signifies that the nth active electrode is excited
by a potential of magnitude ¢, modulated by a phase
proportional to its distance from the Oth electrode. The
excitation parameter y denotes the way the structure is
excited. The counter electrode is set to the reference
potential (0 V.). In the same approach, the mechanical
displacements and the stresses obey this quasi
periodicity law :

U (xl +np ):“i(xl)ejznyn =u, (x,)
— 2y

T, (q+np =Ty (x)e ™" =T, (x,)
These relations yield the definition of specific
boundary conditions at the limits 'y and 'z of the
elementary cell of fig. 1. These conditions simply
deduced from eqgs (1) and (2) are given in eq. (3), and
directly concern the degrees of freedom (dof) at the
corresponding boundary :
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Note that the spatial distribution of nodes (supporting
the dof) on 'y and 'y must be identical to ensure the
coherence of eq. (3). This relation is then used
according to ref. [3] to simplify the linear algebraic
system obtained after discretization and integration of
the piezoelectric Lagrangian expression. In this
approach, the following variable change matrix [C,] is
introduced :
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where u, ¢ corresponds to the dof of the inner meshed
domain (I'y and I’ excluded). Equation (4) is then
inserted in the standard discrete form of the FEA
written as follows for a monochromatic variation of
mechanical and electrical fields considered in the

problem (time dependence in &) :
el e sl
0C, K, Kyl 0G|le [ |0G |0

where K,, and M,, correspond respectively to the
stiffness and mass matrices of the purely elastic part
of the problem, K,, is the piezoelectric coupling
matrix and Ky represents its purely dielectric part.
Superscripts ¢ and * repectively indicates a matrix
transposition and a complex conjugation. Equation (5)
is solved by setting vrp and @rp to zero in order to
comply with boundary condition (3). In the right hand
side of eq. (5), F and Q are respectively relative to
nodal mechanical and electrical load. One should note
that in the case of complex matrices K., K.y and Ky,
the matrix product on the left hand side of (5) yields a
general complex matrix with no particular property.
Addressing the problem of radiation in adjacent media
requires an effort in the description of radiation

1554

conditions. This achieved by using the periodic
Green’s function formalism in which the pressure is
related to the normal displacement via a convolution
integral as follows :

Tl.jnj. =—P with
1 +p/2
P=— J. Gzpz(xl _xl')’{z(xl')lxl' and
p—p/z

(6)
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In eq.(6), the radiation axis was assumed arbitrarily
along u2 without any loss of generality. This
formulation only holds for flat radiation surfaces. In
the case of 3D computation with two periodic
boundary conditions, one has to take a particular care
to the way the corners of the mesh are related one to
the others (see ref.[3]). Inserting eq. (3) into the
discrete FEA formulation via the transformation
matrix given in eq.(4) or the 3D version [3,4] yields
the problem to be dependent on ® and y. Thus, eq. (5)
must be solved for each couple (®, v) to determine the
specific properties of a given structure and to calculate
the harmonic admittance ¥(®, y). Since the magnitude
of the excitation ¢, is fixed to 1.V, X(®, y) is directly
given by the courant generated in the active electrode
by the vibration of the structure. This courant is
simply derived from the nodal charges on the active
electrode using the following formula :

Ne
Yr)=107)=jo Y 0,
n=1

where Ne is the total number of nodes at the
considered electrode. Using the harmonic admittance
as defined in eq.(7), one can easily define the mutual
admittances [15] of the array by using the Fourier
series properties as follows :

Yo(o)=[y Yy /2y ®)
This equation gives access to the influence of the
excited cell of the array (n = 0) on the others, enabling
to estimate for instance the level of cross-talk between
two adjacent cells or to point out propagation
phenomena along the surface of the array. The integral
of eq.(7) is performed using a Gauss numerical
scheme for y defined in the range (0;0.5), taking
advantage of the symmetry of the harmonic
admittance around 0.5. For each frequency point, one
has to compute Y(w, y) at these integration points. On
the other hand, the computation of Y,(®) is almost
immediate using the Gauss integration scheme. This
approach is very efficient for smooth contributions to
the harmonic admittance. For sharp peaks, the
proposed computation is valid only for a given range
of neighbour cells. In the case of 2D periodic
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structures (3D computations), two excitation
parameters have to be defined yielding the following
definition of the mutual admittances:

1 el g n =2y om
V()= [ Yoy P e P rdy dy, (8)
Exploitation

1D linear probe

The first proposed illustration of how the above-
presented model can be exploited corresponds to a
classical 1D antenna probe based on the following
stacked structure :

< mylar
A4 (light)

M4 (heavy)

PZT + filler

Backing

Fig.2 Example of one meshed period of a 1D classical
probe.

In that problem, the top surface is loaded by the lens
plus a semi-infinite water region and the back side of
the stacked structure is also assumed semi-infinite
(backing). For this particular design we had access to
experimental measurement of the admittance of the
device excited in phase (y=0) at different stage of the
fabrication, allowing for the following theory vs
experiments assessment.
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Fig.3 Comparison between theoretical (a) and
experimental (b) admittance of a 1D linear probe

One still remarks some discrepancies between both
results, mainly due to the difficulty to correctly
identify the loss parameters. Actually, one can see that
contributions in air without backing are not accurately
predicted. Nevertheless, all the contributions are
correctly taken into account when radiating in backing
and/or in water, yielding a rather nice agreement
between theory and measurements in both cases. In
those situations, the mutual admittances have been
finally computed, showing the very small amount of
cross-talk effects in this particular design.
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Fig.3 Computation results of the mutual admittance of

the 1D probe, almost no contribution was found after
the 7" neighbor-

2D array for 3D imaging

3D imaging systems require the implementation of 2D
probes. Many developments have been initiated
during the last decade yielding different kind of 2D
arrays devoted to that application. In that issue, the 2D
assumptions are no more valid and the simulation of
actual elementary structures impose the use of 3D
computations. The periodic computation then appears
as an elegant way to reduce the mesh for FEA.
However, one needs to adapt eq.(6) to account for a
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planar radiation area instead of a line. This can be
easily performed for fluids because of their simple 3D
spectral Green’s function but requires more efforts for
solids. Our modeling tools have been enhanced in that
way yielding the following results for a 3D probe
loaded by a semi-infinite backing on its bottom side
(red area in fig.5). One can easily identify the efficient
modes (normal radiation) using the deformed mesh :

0.25

02

0.15 |

Conductance (mS)

01

0.05 |-

Frequency (MHz)

Fig.4 Admittance of the single cell at y=0
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Fig.5 deformed mesh corresponding to fig.4
(a) parasitic mode (b) useful longitudinal mode

MUTs

The last example presented in this paper concerns
micromachined ultrasonic transducers (the so called
MUTs). Such transducers are massively periodic since
each electrical pixel is composed of many elementary
sub-wavelength acoustic cells. Such a structure
exhibits a very particular behavior compared to
standard resonant PZT-based transducers. One can
show using 3D periodic FEA accounting for radiations
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in the substrate and in the water that the linear
operation of electrostatic as well as piezoelectric
MUTs can be represented using the so-called Wilm
diagram reported here, which describes how the
structure vibrates along the excitation parameter v.

Frequency
A

/v, = fp/y, = 5450 m.s" |
/ wave guided by the substrate

©

0

Normalized wave vector
Y. = kp/2n

Fig.6 The so-called Wilm diagram showing the nature
of the MUT vibration vs the excitation parameter

Conclusion

The use of periodic FEA associated with a BEM
approach to simulate radiation in different kind of
media enables a realistic description of the actual
operation of ultrasonic transducers. Particularly for
medical imaging applications or non-destructive
evaluation, one can take advantage of such simulation
tools to accurately design and analyze any kind of 2D
as well as 3D devices. The possibility to extract
mutual admittances or displacements from these
periodic computations provides an efficient way to
estimate cross-talk phenomena but also to simulate
any excitation condition of the probe, yielding for
instance the possibility to estimate directivity of a
probe or to compute its actual transfer function.
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