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Abstract

A modelling approach able to address
complicated SAW periodic structures with non
homogeneous geometry has been developed and
implemented. It is based on the combination of
finite element analysis and a boundary element
method. Validation of the computation is
reported. An example of simulation of a
passivated STW resonator is wused for
theory/experiment assessment.

Introduction

The simulation of periodic transducers devoted to
surface acoustic wave (SAW) application has
received a very high interest for more than 10
years. Very accurate models have been developed
to compute SAW excitation and propagation
parameters [1], efficiently used in COM or mixed
matrix procedures devoted to SAW filter design.
Moreover, the use of more advanced transducer
structures has revealed many advantages for
more robust devices exhibiting optimised
properties  (temperature compensation  for
instance). However, most of the above-mentioned
simulation tools are implemented assuming a
single electrode (or 3 electrodes max.) per period
with vacuum as the adjacent medium. This
assumption considerably simplifies the model
(the electrode 1is assumed perfectly flat
electrically) but is not suited to simulate devices
based on more complicated electrode
arrangements  including  dielectric  layers
deposited on the electrode array.

The present paper describes an approach mixing
a Finite Element Analysis (FEA) and a Boundary
Element Method (BEM) to simulate any periodic
clastic wave guide. The basic idea consists in
meshing the non homogeneous part of the
transducer (typically the domain close to the
electrodes) and a part of the substrate (typically
one to two wavelengths). A radiation condition is
then applied at the meshed boundary of the
substrate based on boundary elements built using
the Green’s function of the substrate. The later
can be composed of a single material or a layered
structure (including fluids and vacuum) assuming

flat boundaries. This approach can be applied on
one or two sides of a given device to reduce
computation duration or to address the problem
of interface waves.

In the first section of the paper, theoretical
developments are detailed together with
numerical implementation  considerations.
Validation tests are then reported, performed for
standard SAW devices on quartz. Experimental
measurements have been also performed using
fused silica deposited atop a surface transverse
wave (STW) device. Comparison between
theoretical and experimental characteristics of the
STW is finally reported and discussed.

Fundamentals

As already reported in many references (see for
instance [2]), FEA can be performed for periodic
devices with rather simple modifications of the
basic algebraic formula relating the displacement
and electrical fields to the boundary solicitations.
Figure 1 shows a general scheme of the
considered periodic device geometry.
Propagation is assumed taking place along x,
inhomogeneous along x, and independent along
x3. As shown in this figure, the meshed region
can be composed of various materials with
arbitrary contours assuming they can be well
represented using an elastic displacement FEA

formulation. Material losses can also be
considered.
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Fig. 1 General scheme of the addressed problem

The basic equations governing periodic FEA
computations are now briefly recalled. It consists
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first in relating all the degree of freedom (dof) on
boundary I'y to those on boundary s, yielding
the following expression:
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in which u and ¢ respectively hold for
displacement and electrical potential, and y is the
excitation parameter. This relation is then used to
reduce the number of independent dof of the FEA
model. This is performed without changing the
total number of dof of the problem, simply by
using a variable change operator C. This provides
the following form of the FEA algebraic system
to be solved:

[ Czo Kuu_(’onuu Kud) Cu 0 v _[ C::O F (2)
0G K Kl 0G]lo [ [0G](Q

where K and M are respectively the FEA stiffness
and mass matrices, v and ¢ the independent dof
of the problem and F and QO the right hand side
boundary forces and electrical charges. Since K
can be complex, the left hand side matrix in (2) is
general (hermitic if Ke®R), but sparse. These
properties are considered when solving the
problem.

Let us now consider the case of acoustic radiation
on one border of the meshed domain. In that
purpose, the general variationnal equation is
considered, limited to the purely elastic problem
without any loss of generality:
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in which du; is the variationnal unknown and #;
the normal to boundary I" on which the radiation
boundary condition is applied. Equation (3) is
written in 3D but of course its restriction to 2D
problems does not induce any fundamental
difficulty. The right hand side of (3) is then
considered separately. In this matter, one can
relate the stress Tj; to the displacement uy in the
spectral domain (denoted by ~) by using a
Green’s tensor, which generalise the usual
surface stress relation widely used in SAW
modelling [4], as follows :
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This equation allows one to consider any flat
boundary for the application of the radiation
conditions, even if tilted in the plane (x1,x»).
Using the now well-established periodic Green’s

0)dy= j [ouT;m,ds 3)

function formalism, the right hand side of eq.(3)
is expressed as :

I Su, T n dS=
2n , (5)
R 2R (g +D)(x-x")
.[ JlSuz' (x)z Gy +l,c0);e Tt u(x")dx'dx
T [=—0

The classical FEA interpolation procedure is then
applied to eq.(5), yielding the following
expression of the boundary radiation operator :
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where E is the total number of “radiating”
elements, and P,(x) are the FEA interpolation
polynomials (1 or 2™ degree). This equation can
be finally written as :
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The contribution of the radiating boundary to the
global algebraic system to be solved consists then
in a frequency and excitation parameter
dependent matrix X(w,y) related to both dof and
variationnal ~ unknown and  consequently
computed in the left hand side of eq.(2).

Numerical implementation
1. General discussion

In this section, a particular interest is dedicated to
the properties of the different terms involved in
the computation of eq.(7) and a strategy is
proposed to reduce computation duration. In
eq.(7), it appears that the two boundary integrals
are complex conjugated, potentially yielding
hermitic properties of the matrix. However, the
parity properties of the Green’s function [3]
prevent any simplification of the calculation. It is
then necessary to compute all the terms of eq.(7).
However, it is relevant to compute the integral
Iiyep™® for all the possible values of y+/ and for
all the radiating elements, and also to compute
the Green’s tensor for all y+/ and ® before
assembling the radiation matrix X(®,y) which can
be performed just before solving the system.
Note that this assembly cannot be performed in

928



the usual FEA approach in which elementary
matrices are summed to built K and M. In the
present case, the non symmetric sky line matrix is
directly built computing all the cross-coupled
terms induced by the convolution between the
unknown fields and the Green’s tensor.

In eq.(5) to (7), an infinite sum over the space
harmonics is performed to compute the Green’s
function. Practically, the sum is reduced to a
finite number of terms to ensure the convergence
of the calculation. A specific treatment of the
asymptotic behaviour of the Green’s function is
under development. Finally, the radiation
medium can be composed of any combination of
solids and fluids (assuming flat interfaces), taking
advantage of the stabilisation of the Green’s
function described in [4].

2 Numerical tests

The proposed theoretical development has been
implemented and a first set of computation tests
has been performed considering the excitation of
transverse waves on AT quartz and on Y+42°
LiTaOs;. The Ilater allows for considering
generally polarized waves even if mainly
transverse. The computation results are compared
to those provided by the well-known mixed
Finite Element/Boundary Integral approach
proposed by Ventura & al [1]. The mesh used to
compute the problem is plotted in fig.2. The
period p of the grating was arbitrarily fixed and a
metal ratio a/p=0.5. The number of elements has
been kept identical for all the computations and
only the aluminium thickness was set arbitrarily
too. As shown in fig.2, only a small part of the
semi-infinite medium had to be meshed, yielding
rather short computation delays.
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Fig.2 Typical mesh for modelling a standard
SAW transducer (2" degree interpolation)

The next figures shows quite nice comparison
between the well established FEA/BIM model
and the present work. Convergence was found for
a small number of spatial harmonics and only to
element layers were required to operate the
matching between FEA and BEM formulations.
Figure 3 shows the comparison between
harmonic admittance of a STW device on (AT,Z)
quartz computed along the two considered
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approaches for different frequencies and
excitation parameters, with an almost perfect
superimposition of both results.

Y H) (i) T TRPR ——

a

Frequencs= {WiH:) 1 30;0350
1100

Fig.3 Imaginary part of the harmonic admittance
of a STW on (AT,Z) quartz
solid green : FEA/BIM solid blue : this work

The next figure shows a superimposition of the
harmonic admittance for a PSAW on Y+42°
LiTaOs;. Here again, the two results perfectly
matches one to the other.

Tatabts 12
a0 i ) | =
| CTAFF 4+
200 1
I
o 4
o s |
E— 1o | Ir
L r
I -amf
o
E =l
aon
mon |
-500 | X
ron L L L L L L L n L
w0 BN B Ea) 60 WO 100 100 NS0 200 1@
Froquence (WHZ)

Fig.4 Imaginary part of the harmonic admittance
of aPSAW on (Y+42) LiTaO;
solid green : FEA/BIM  dots blue : this work

The next figure shows that the dispersion curve
and then propagation parameters can be
efficiently extracted from the curves obtained
using the proposed approach, comparatively to
the extraction procedure proposed in ref. [1].
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Fig.5 Comparison between dispersion curves
provided by the two considered models
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Application to interface waves

Interface acoustic waves (IAW) represents an
attractive evolution of SAW devices for different
reason. First, it is possible to excite high velocity
waves [5] exhibiting properties close to bulk
waves, yielding possibilities for improving
device parameters such as coupling factor,
temperature sensitivity, quality factor, and so on.
Another advantage consists in the packaging of
such device which becomes compatible with all
those developed for standard microelectronics
(no more air gap required). Whatever the
advantages, one has to model these devices
particularly to optimise their propagation loss
which can be quite large [5]. The proposed
development appears particularly well suited in
that matter since the radiation condition can
applied for each side of the considered domain.
For instance, the next figure shows a typical
mesh of and interfacial transducer built between
to Y+128 LiNbOs; plates glued using a polymer
layer. The period is 6um, the thickness of the
electrode equals 200 nm and the expected
polymer thickness was of the same scale order.
Radiation boundary conditions are then applied
on top and backside of the mesh with a particular
care to the normal orientation imposing different
mode selection for the Green’s function
computation on each side of the mesh.
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Fig.6 mesh of an interface wave transducer

Such a device has been built for an experimental
assessment of the theory. A photo of the devic is
reported in fig.7. It shows reduced LINbOj; plates
glued on an LiNbO; wafer atop single port
resonators.

Fig.7 Photo of the test vehicle for the IAW
experimental assessment

These devices have been probed to obtained their
admittance which is compared to the
corresponding computed harmonic admittance
for an excitation parameter set to % (alternation
of +V/-V excitation potential). The reported
results show that the model accurately predict the
arising of an IAW exhibiting large losses (the cut
nor the structure were optlmlsed in that sense).
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Fig.8 Comparison between theoretical (top) and
experimental (bot.) IAW admittance signature

Conclusion

A model combining periodic FEA and a
boundary element method has been successfully
developed and implemented to address the
problem of highly non homogeneous surfaces of
elastic wave guides. The results provided by the
proposed approach has been compared to well-
established models and was found to provide
accurate predictions whatever the polarisation of
the wave is. This approach can be efficiently
used for addressing many problems such as
passivated SAW devices or Interface wave-
guides.
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