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Abstract
   Focusing ultrasound is needed for high resolution
imaging applications such as non destructive testing
(NDT) or medical imaging. Its effects are explored
in the case of a single-element transducer focused
with a lens, and electrically driven with a broad-
band excitation. The electro-acoustic response very
near  the surface of the transducer is first modelled
using a finite element method (ATILA). This
response in the very near-field is then propagated in
water thanks to two codes. These results are
presented and compared. Using these tools, the
electro-acoustic response is investigated at the focal
point, as a function of the acoustical impedance of
the lens.

Introduction
   The use of focused ultrasound is necessary for
many applications such as NDT and medical
imaging. In order to obtain a good trade-off in terms
of lateral resolution and depth of field, the f-number
which is the ratio between the focal distance F and
the diameter of the transducer is often between 2 and
3. Moreover, according to typical lens material
properties, the focal distance is between 3 and 6
times the radius of curvature. These two conditions
impose a range of values for the radius of curvature
of the lens which is between one and two radius of
the piezoelectric disk (highly focused configuration).
Consequently, a 2D axisymmetric resolution scheme
can be used. We chose to take advantage of the finite
element method (FEM), with the ATILA software,
which can take into account both longitudinal and
radial components.
The aim of this study is to determine the influence of
a focusing lens (and corresponding acoustical
properties) on the pressure field at the focal point.
Many investigations dealing with the radiation of a
focused transducer have shown that there is no
analytical solution even for classical harmonic
excitation [1], so that some approximations have to
be made.
Here, FEM is used to calculate the electro-acoustic
response to a broad-band excitation very near the
surface of the focused transducer. Two propagation
codes, a method based on the Discrete Hankel
Transform (DHT) [2] and the numerical integration
method of the Rayleigh integral (NIM) [3, 4] are
then used to compute the electro-acoustic response

up to the focal point. Finally, a performance index
defined for imaging applications is presented as a
function of the acoustical impedance of the lens,
while the focusing distance is kept constant.

Configuration and material properties
  For this study, the configuration retained is a high

frequency single element transducer based on a
piezoelectric disk bounded on the rear face by a
backing and on the front face by a matching layer
and a lens (Figure 1). The piezoelectric material is a
lead titanate ceramic (Ferroperm Pz 34) with a
thickness of 50 µm corresponding to a centre
frequency of the simulated transducer at 43 MHz.
To determine the other material properties
(acoustical impedance and thickness) of the backing
and matching layer, an optimisation method is used.
This method calculates the electro-acoustic response
of the transducer with an equivalent electrical
scheme (KLM unidimensional model) to deduce a
value of a performance index defined as:

( ) ( ) ( )20 4030 log 20log 10logx d d amp= + −    (1)
where d20 and d40 are respectively the time durations
at –20 and –40 dB of the gaussian envelope, and
amp is the amplitude of the envelope of the electro-
acoustic response. This index allows to obtain an
appropriate electro-acoustic response in term of
trade-off between sensitivity and axial resolution,
specifically for imaging applications [5].
The minimisation of this index by a recursive
algorithm delivers, with the corresponding electro-
acoustic response, the optimal properties of the
backing and matching layer (Table 1).

  Figure 1: Mesh and dimensions (µm) of the single
                  element transducer.
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    Table 1 : Properties of the different elements (Z is the acoustical impedance, ρ the density, cL and cS are the
                    longitudinal and shear wave velocities, lL is the length along the z propagation axis normalised by the
                    wavelength, and nL the mesh density given in mesh per wavelength).

Backing Piezoelectric disk Matching layer Focusing lens Water
Z (MRa) 3.8 35 6.8 2.2 1.5
ρρρρ (kg/m3) 1815 7550 3930 1035 1000
cL (m/s) 2120 4630 1725 2100 1490
cS (m/s) 1005 2675 850 1060 -
lL (λλλλ) 9 1/2 1/4 l/4 -

nL (mesh/λλλλ) 5 16 16 9 8

The diameter of the transducer has also been chosen
(Figure 1), according to the dielectric constant of the
piezoelectric element, to have an electrical
impedance at the centre frequency near 50 Ω.
   The optimised mesh for FEM calculation is chosen
in term of trade-off between precision and
calculation time in order to fit the first harmonic of
the impulse response at the transducer’s surface
(along the dotted line in Figure 1). In the same way
the radial mesh is determined to allow edge wave
propagation in water. The mesh density is given in
Table 1 as a function of the wavelength.
   The acoustical impedance of the lens is chosen to
vary from that of water (i.e. 1.5 MRa) up to 5 MRa
in order to determine the which gives optimal
properties of the electro-acoustic response of the
transducer.
   From the acoustical impedances deduced (backing,
matching layer) or chosen (lens), an homogenisation
model is used (ATA model) to calculate the
corresponding wave velocities (cL and cS) in epoxy
resin loaded with metallic particles. These results,
used as inputs for the ATILA software, are given in
Table 1 and Figure 2 for the lens.
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Figure 2 : Properties of the lens (- - cL (m/s),
                   -o- cS (m/s), -+- ρ (kg/m3), -x- Rc (µm))
                   as a function of its acoustical impedance.

The focal distance in the case of a strongly focused
lens is derived from the ray theory and is given by:

( )
2

2 202 1 c c
L

aF
c R R a
c

=
 

− − − 
 

    (2)

where a is the radius of the transducer, Rc is the lens
radius of curvature, c0 and cL are the longitudinal
wave velocities in the propagation medium and in
the lens (Figure 3). The radius of curvature Rc is then
chosen to keep constant the focal distance F (6.3
mm) in all simulations given by (2) (see Figure 2 for
the variation of Rc as a function of Zlens).

Figure 3: Geometry and parameters of the lens.

Propagation models
   Once the electro-acoustic response is known in a
plane in water (as shown in dashed line on Figure 1),
the pressure field is computed using two propagation
codes which are briefly described.

Discrete Hankel Transform
The Hankel transform or the Fourier Bessel
transform is a simplified formulation of a
bidimensional Fourier transform in the case of axi-
symmetric geometry. It is used in the frequency
domain, i.e. in the (k,ω) space.
The pressure field p(r,z,t) is known in a plane,
extracted as a result of a radially symmetric FEM
calculation. A Fourier transform then permits a plane
wave decomposition, from p(r,z,t) to p(r,z,ω).
Similarly to the bidimensional Fourier transform for
a bidimensional geometry,

( ) ( ) ( ), , , , , , . .x yj k x k y
x yP k k z p x y z e dx dyω ω

+∞ +∞
− +

−∞ −∞

= ∫ ∫     (3)

the Hankel transform expresses the axisymmetric
expression p(r,z,ω) in the (kr, z, ω) space:

( ) ( ) ( )0
0

, , , ,r rP k z p r z J k r rdrω ω
+∞

= ∫     (4)
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A discrete Hankel transform [2, 6] was implemented.
Once the pressure is expressed in the (k,ω) space, the
analytical z-delay function is used as a propagation
operator, either in its radial space form, called the
spatially sampled convolution (SSC) or in its radial
frequency form, called the frequency sampled
convolution (FSC). This last solution is a very fast
way to calculate the pressure field on a whole radial
plane for each calculation step.
A major improvement of the FSC, called ray theory-
updated frequency sampled convolution (RFSC),
consists in a decrease of the propagation wave-
number to its significant values [2].

Numerical Integration Method
The numerical integration method is based on the
Rayleigh integral:

( )
( )
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ω

ωρ
π

−

= ∫∫     (5)

where R is the distance between the point source and
the observation point, S the surface, and v the point
source velocity. It is then decomposed in a sum of
contributions of small size elements (as compared to
the near-field distance), so that the far-field
approximation is verified [3, 4].
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Each active sub-element of step an is calculated in
order to satisfy the far field assumption, with:

2 400
/nearfield

nearfield n

z zn
L a λ

= = =     (7)

so the size of a sub-element is given by:

n
nearfield

za
n

λ=     (8)

These calculation methods were implemented and
validated with harmonic excitations on a piston
transducer for which the analytical solution is
known. Moreover, the results obtained in the case of
a focused transducer were compared to the classical
approximated solution [1], and a good agreement
was found.

Results
Propagation code comparison
The on-axis pressure (Figure 4) is nearly the same
for the NIM, DHT-SSC, DHT-RFSC methods, from
the most accurate (NIM) to the faster (DHT-RFSC).
For a high resolution calculation, the NIM is the
most accurate, but the calculation can be time
consuming. The main advantage of the DHT
methods is that they give directly the pressure in a
whole radial plane, so the lateral resolution is known
at each calculation step.
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Figure 4 : On-axis pressure (--- NIM, -+- DHT-SSC,
                 -x- DHT-RFSC).

A good accuracy is obtained with the DHT-SSC and
a low precision but faster calculation with the DHT-
RFSC.
At the focal point, we have computed and
characterised the electro-acoustic response (Figure
5) for a given configuration of the transducer. The
NIM and DHT-SSC are in good agreement up to –60
dB, and can therefore be used. But, the DHT-RFSC
algorithm is less adapted than the two other since
errors appear at –40 dB. Finally, for a chosen on-
axis z position, the calculation time difference is
negligible, and the accuracy is comparable for the
NIM and DHT-SSC.
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   Figure 5 : Normalised envelope of the impulse
                    response at the focal point (--- NIM,
                    -+- DHT-SSC, -x- DHT-RFSC).

Influence of a focusing lens
The calculation of the electro-acoustic response at
the focal point has been performed (ATILA+NIM)
for several values of lens acoustical impedance. The
performance index (1) has been calculated for each
configuration.
The results with a lens are first compared to those
obtained by replacing the focusing lens by a second
matching layer, using the one dimensional KLM
model.
The obtained KLM optimal values range from 1.7 to
2.5 MRa, while those of propagated FEM results
(Figure 6) vary between 3.3 to 4.1 MRa.
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This can be explained by the fact that neither the
propagation nor the focusing are taken into account
with the KLM simulation.
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  Figure 6 :Imaging performance index x (-!- KLM
                  and propagation filtering, -x- ATILA and
                  NIM propagation).

Consequently, the KLM result at the transducer’s
surface needs to be propagated, taking into account
the acoustical focusing generated by the lens. This
calculation (Fig. 6, -!-) is performed thanks to a
propagation filter using the NIM propagation code
described earlier.
The performance index curve is smoother for the
KLM propagated result (Figure 6, -!-) than for the
ATILA propagated result (Figure 6, -x-). This can be
explained by the fact that with KLM, there is no
disruption from radial modes, whereas it is the case
in the ATILA simulations.
The performance index curves are slightly different,
but the optimal range of values are very similar.
The optimal range of values for the acoustical
impedance of the lens is nearly the same with 3.5 to
4.7 MRa and 3.3 to 4.1 MRa respectively for
propagated KLM and ATILA results.
Dispersion of the acoustic energy can also be
observed on the impulse response at the focusing
point (Figure 7).
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    Figure 7 : Impulse response at the focal point for
                    Zlens = 4.1 MRa (KLM and propagation
                    filtering, ATILA and NIM propagation).

Nevertheless, the pulses are very similar, and even if
the beginning is slightly different, the measured
characteristics are the same: the amplitude and the
duration at –20 and –40 dB are equal within a few
percent.

Conclusion and perspectives
   An optimisation of properties for imaging
applications was performed on a single element
transducer, as a function of the acoustical impedance
of the focusing lens. The focal spot was calculated
using a modelling of the longitudinal and radial
modes with the finite element method, using ATILA
software and a propagation code. The
characterisation of the focal spot, in sensitivity and
axial resolution, was investigated through a
performance index.
The optimal range of values obtained with the
propagated KLM results is nearly the same as that of
propagated ATILA results. Thus the propagated
KLM result, considering only longitudinal modes, is
an interesting fast alternative way to determine the
optimal range of acoustical impedance of the lens.
For a global optimisation of the transducer, the
electrical excitation waveform must be investigated
in order to obtain an impulse response corresponding
to imaging application requirements.
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