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Abstract

With the increase in operating frequencies of wire-
less communication standards, Thin Film Bulk Acous-
tic Resonators (FBAR’s) are expected to become a key
technology to provide miniature, high-performance and
high-frequency filters. In this paper we briefly describe
some models for simulating FBARs. We also discuss
device optimization in terms of electromechanical cou-
pling and characterization of fabricated devices. Fi-
nally, we show the interest of taking the exact geometry
of devices into account.

Introduction

With the increase in operating frequencies of new
wireless communication standards, fabrication of Sur-
face Acoustic Wave (SAW) devices becomes difficult.
Dimensions of interdigitated transducers become very
small. This increases the difficulty of the photolithog-
raphy process. In order to produce SAW filters at fre-
quencies above 3 GHz it is necessary to use expensive
equipments, such as E-beam or X-Ray writers. This in-
duces an increase in the unity cost of these components.
Moreover the power handling of these devices also be-
comes problematic, as the acoustic power density flow-
ing through the transducers becomes high. Thin Film
Bulk Acoustic Resonators (FBAR’s) tend to overcome
these difficulties, and provide the possibility to design
miniature, high-performance and high-frequency filters.
Such resonators are basically made of a thin film of
piezoelectric material vibrating in its thickness exten-
sional mode [1]. With recent advances in thin film de-
position, materials exhibit low mechanical losses, good
electromechanical coupling factors, and high break-
down voltages for thicknesses in the order of 1µm.
These properties make resonators suitable for filter ap-
plications in the gigahertz range. Furthermore, one of
the main advantages of FBARs is that their fabrication
is compatible with standard IC processes. This enables
the fabrication of resonators or filters along with other
classical components on the same wafer. To our knowl-
edge, oscillators or VCOs have already been fabricated
and studied [1], [2].

Practical structures are reported in Figure 1. They
are a little more complicated than the ideal electroded
piezoelectric plate, as they require a substrate to support
mechanically the resonator. This causes acoustic waves

to propagate within the substrate and thus to make the
composite structure vibrate at a much lower frequency.
Though some devices, called Overmoded Resonators
(OMR), use high harmonics of the fundamental thick-
ness vibration of the substrate, when designing a res-
onator for filter applications, one usually want to get
rid of the substrate’s influence. A first solution is to lo-
cally etch the substrate so that only a thin support mem-
brane remains under the piezoelectric layer and is made
to vibrate. Other solutions require the isolation of the
resonator from the substrate by either providing an air
gap between them, fabricated by surface micromachin-
ing processes, or by depositing an acoustic Bragg mir-
ror, made of alternative high and low impedance quarter
wavelength layers, atop the substrate.

Solidly Mounted Resonator

air gap

Air−gap resonator

substrate
Backside etched

Resonator over a membraneOvermoded resonator

Figure 1: Practical resonator structures.

A few resonators need to be coupled together to pro-
duce a band pass filter. The most popular method is
to use these resonators as impedance elements in lad-
der structures. Two types of resonators are fabricated
to provide a resonance at two distinct frequencies. The
changes in impedance with frequency lead to the filter
response. The second way is to use mechanical rather
than electrical coupling. Two resonators are stacked
vertically, so that they lead to a set of coupled oscil-
lators which exhibit two resonances, and thus a filter
response. These filters are called Coupled Resonator
Filters [3].
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Figure 2: Practical filter structures.

To simulate such complex structures, efficient mod-
els need to be used. The simplest one is the
Butterworth-Van Dyke lumped elements model de-
scribing the resonance of any acoustic resonator. Some
improvements have been recently added to the particu-
lar case of FBAR structures [4], [5]. Its main interest is
that it is widely used for fast device evaluation in pro-
cess steps, but it cannot practically be used to predict
the electrical response of resonators. The second model
is Mason’s which is the most widely used. It gives a
rigorous calculation for one wave traveling in a mul-
tilayered medium, and as such is much more accurate
than the lumped-elements representation. We prefer us-
ing a Fahmy-Adler representation of waves in multilay-
ered materials [6]. Unlike Mason’s model, it handles
all acoustic modes that can propagate within a lami-
nar layer. We have improved the original Fahmy and
Adler’s transfer matrix method so that is numerically
more stable at high frequencies [7]. Though it is basi-
cally only one-dimensional and does not account for the
shape of electrodes or the precise geometry of devices,
it is useful in dimensioning layer thicknesses, and to
provide a good idea of resonator performances, like res-
onant frequency, electromechanical coupling and qual-
ity factor. More complete models are based on the Fi-
nite Difference Time Domain (FDTD), on the Angular
Spectrum method or on the Finite Element Method /
Boundary Element Method (FEM/BEM) [8].

In a first part of this paper, we briefly describe some
of the basic models used for simulating devices. We
then focus on the characteristics of the different types
of resonators and compare their capabilities. After that,
we discuss the characterization of deposited materials
using OMR’s. Finally, we discuss more detailed simu-
lations that can take geometric details into account.

Simulation of acoustic waves in multilayers

We make here a fast review of models available for
the prediction of the behavior of waves in a multilayered
medium. All these models provide finally the electrical
response of devices implemented by a stack of material.

Mason’s model
Mason’s model is one of the most simple models that

provide an accurate description of the propagation of
a mode within a multilayered material. It deals with
a pure mode, either of longitudinal or shear polariza-
tion, and the electric wave that propagates along with
the mechanical wave. The characteristics of the prop-
agation are given analytically as a function of the ma-
terial properties. Also, by adding an imaginary part to
the elastic and dielectric constants it becomes possible
to take material losses into account.

The formulation of this model provides two equi-
librium equations for one layer. These equations are
solved using four boundary conditions:a mechanical
and an electrical one on each side of the layer. For mul-
tilayered structures, assuming that mechanical displace-
ments and electrical potential are continuous at the in-
terface between two solids, it becomes possible to link
the characteristics of the wave inside a layer to the char-
acteristics in an other layer.

The main drawback of this model is that it can only
deal with one mode and a given propagation direction.
When changing the configuration, the characteristics of
the new mode need to be recalculated. When exotic
materials with specific crystalline orientations are to be
considered, a few modes may exist simultaneously, and
the model is no longer valid.

Fahmy-Adler formulation
The Fahmy-Adler formulation overcomes this prob-

lem. The vibration of a piezoelectric plate is described
as the superposition of eight partial modes, two of
which are purely electrostatic [6]. We have modified
the original model to take into account perfectly con-
ducting solids, by removing the two electrostatic par-
tial modes [9]. We are also able to consider insulating
fluids, like air for example, where the number of par-
tial modes drops to four: two purely mechanical and of
longitudinal polarization, and two purely electrostatic.
These partial modes are obtained numerically in the
case of solids by solving an eigenvalue problem, or an-
alytically in the case of fluids. Thus, electromechanical
fields in a layer are written as

h = (u1, u2, u3, Φ, T21, T22, T23, D2)
T

= F∆(x2)aejω(t−s1x1−s3x3) (1)

where ui are the mechanical displacements compo-
nents,T2i the components of the stress tensor that are
continuous through the interface between two layers,
Φ is the electric potential, andD2 the electric normal
displacement,F is the matrix containing the polariza-
tion of all eigenmodes,∆(x2) is the diagonal matrix
containing the propagation with depth terms anda the
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vector containing the amplitudes of the partial modes.
Axes conventions are shown in Fig. 3.

layer 0

layer 1

...

layer n

layer −1

...

layer −m

x1

x2

reflectedtransmitted

transmitted reflected

Figure 3: Axes definitions for a multilayered
structure, and orientation of transmitted and reflected

partial modes.

Within all the matrices in Eq. (1), partial modes are
splitted into two groups, depending on their propaga-
tion direction, or the direction in which they are evanes-
cent for inhomogeneous modes: these are called either
transmitted from the excitation electrode, or reflected
back to the excitation electrode, as depicted in Figure
3. The main purpose of the scattering matrix method
is to compute reflexion matricesR(x2) that link ampli-
tudes of partial reflected modes to amplitudes of partial
transmitted modes:

∆R(x2)aR = R(x2)∆T (x2)aT , (2)

where the subscriptsR andT indicate the restriction of
matrices to respectively the reflected or the transmitted
partial modes. The algorithm starts at the interfaces lim-
iting the electromechanical structure. In Figure 3, they
correspond to the top of layern and the bottom of layer
−m. On these surfaces, two types of boundary condi-
tions are considered:either a semi-infinite medium, in
which case no reflected modes are encountered in this
layer, or a stress-free surface, which provides a rela-
tion between reflected and transmitted waves. In both
cases, the reflection matrices at these surfaces are de-
termined. A recursion scheme is then implemented, to
transfer these matrices from one side of the layer to the
other using the relation

R(x′2) = ∆R(x′2 − x2)R(x2)∆T (x2 − x′2), (3)

where x2 and x′2 are coordinates in the same layer.
A second step is to calculate the conversion of modes

between two layers. This is achieved by writing the
continuity of the displacements, the normal stresses,
the potential, and the electric displacement. The two
last components may be assumed zero if a conducting
layer other than the excitation electrode is encountered.
Then, these steps are repeated until boundary condi-
tions applied to the multilayer have been transfered to
the boundary of the excitation electrode layer. It is then
written that the electric potential is forced to a normal-
ization value of 1 in the neighboring insulating lay-
ers, and that mechanical components stay continuous
through the limits of the electrode layer. This provides
a relation giving the amplitudes of all partial modes in
the layers number -1, 0 or 1 proportional to the input
voltage. Then it is possible to calculate the currents in
the electrode, given by the discontinuity of the electric
displacements between insulating media and the metal,
and the applied potential, which provides the electric
admittance of the device. On the other hand, we have al-
ready determined the mode conversion relation at each
interface, so that it is possible to determine the ampli-
tudes of partial modes in every layer. This allows us
to study standing wave patterns within any multilayer.
This method will be described in much more details in
a forthcoming paper [9].

In the following of this paper, resonator perfor-
mances are described in terms of quality factorQ of
the resonance, and of electromechanical coupling, that
is calculated using the determination of resonancefR

and antiresonancefA frequency, as given by the stan-
dard formula [10]

k2 =
π2

4
fA − fR

fR
. (4)

Simulation of resonators
The basis of the simulation has been described in the

previous section. We are now looking at the simulation
of resonator structures.

Overmoded Resonators
In the OMR configuration, a bulk wave resonator is

put directly atop a thick substrate. So, vibration oc-
curs not only in the thin film layer, but also in the sub-
strate. This leads to a very low fundamental resonant
frequency, in the order of around 10 MHz for a nearly
400 µm thick silicon wafer. As most of the acoustic
path is located within the substrate, properties of the
resonator are mostly given by the substrate’s properties.
This is why such resonators are usually made with high
quality materials. To reach the gigahertz range, it is also
necessary to use high order harmonics. But in that case,
the resonance peaks are very close to each other, and are
difficult to discriminate. An example of the simulated
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response of such a device is shown in Figure 4:the qual-
ity factor is very high, as the substrate is monocristalline
silicon, but the electromechanical coupling is very low,
as high order harmonics are examined.
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Figure 4: Response of an overmoded resonator.

Air-gap Resonators

The interface between the electrode material and air
provides the isolation needed for the resonator to oper-
ate like the ideal electroded plate. Air has such a low
acoustic impedance that the acoustic power transmit-
ted through the air-gap is neglectible and cannot really
make the substrate vibrate. Despite this behavior, it is
the most complicated structure to fabricate. The first
main technological challenge is the deposition of a sac-
rificial layer that needs to be etched when releasing the
piezoelectric membrane. There may remain some ma-
terial underneath the membrane, what deteriorates the
response of the resonator. The second difficulty is to
produce a low-stress membrane so that it remains quite
flat and does not break when it is released. Finally, such
a membrane is very sensitive to chocks, unlike more
monolithic structures, like the OMR or the SMR.

As resonators operate at a very high frequency,
the thickness of electrodes does no more remain ne-
glectible. Their effect has then been investigated. They
mainly cause a resonance shift due to the mass-loading,
or the extension of the resonant cavity size, but this ef-
fect is not linear, as shown in Fig. 5. It also depends
on the mass of the electrode. A second effect is that the
electromechanical coupling coefficient has an optimum.
This is due to phase matching between the longitudinal
mode in the resonator and the electrostatic one. The
optimum gets higher for a metal with a high acoustic
impedance, as reflexions at the interface between metal
and piezoelectric provide some energy trapping within
the piezoelectric.
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Figure 5: Resonant frequency shift and coupling
coefficient enhancement vs. electrode thickness. These
curves correspond to a 2.5µm thick AlN membrane,

with either aluminum or molybdenum electrodes.

Solidly Mounted Resonators
As stated above, a SMR is made of a res-

onator fabricated atop a Bragg mirror, composed of
quarter-wavelength layers of alternatively high and low
impedance materials. The effect of these layers is to
lower the acoustic impedance of the substrate so that
nearly total reflection of the waves occurs at the bot-
tom of the resonator. This ensures that the acoustic
power remains localized within the piezoelectric layer
and thus that the resonator exhibits a good electrome-
chanical coefficient. Examples of reflection coefficient
of Bragg mirrors are shown in Figure 6 for two ma-
terials combinations. These coefficients have been ex-
tracted by taking the component of the reflexion matrix
which corresponds to the reflexion of the longitudinal
wave in the metal at the bottom of the bottom electrode
of the resonator. The number of layers pairs needed and
the width of the frequency band in which the mirror pro-
vides a good reflection coefficient are functions of the
impedance ratio of the two materials used. But what-
ever their nature, the bandwidth of the mirror is wide
enough to reject modes linked to the reflection on the
back side of the substrate.

Once the mirror is designed, the resonator itself must
be optimized. This is performed by adjusting the thick-
nesses of the electrodes, which is the last parameter to
adjust. These exhibit the same kind of effects as the
air-gap resonator. But here, in Fig. 7 the frequency
has been kept constant by adjusting the thickness of the
piezoelectric layer.

Device characterization
In order to accurately simulate FBAR devices we

need to use well-characterized material constants. In
this view we have fabricated devices and characterized
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Figure 7: Effect of electrodes thickness:piezoelectric
thickness needed to ensure a constant resonance

frequency and electromechanical coupling.

them. They were made in the OMR configuration:a 2
µm thick AlN film DC-sputtered with 200 nm thick alu-
minum electrodes over a 380µm silicon wafer. Electri-
cal measurements were fitted by varying AlN material
constants, while fixing silicon and aluminum proper-
ties, which are well-known since they have already been
used for many applications. In the fit progress, coupling
is directly related to thee33 parameter, the static capaci-
tance toε33, the quality factor to mechanical losses and
the floor of the admittance curve is due to the dielec-
tric loss tangent of the material. A rigorous analysis
would also consider ohmic losses in the electrodes, but
we rather include them in the loss tangent. The only
constant that cannot reasonably be fitted isc33 because
the tolerances upon the thicknesses of all layers are suf-
ficiently large to have them account for the exact loca-
tion of the resonance frequency. Such a fit is shown in
Figure 8.

To overcome the problem of determining the elastic
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Figure 8: Device measurements versus fitted
response.

constant of the piezoelectric layer, we etch the backside
to reduce the thickness of the substrate. This way, the
dependence of the resonance upon the substrate’s prop-
erties is lowered, and by comparing different measures
of the same device for multiple substrate thicknesses
it is possible to determine more accurately the piezo-
electric’s properties. Fitted values are reported in Table
1. These values are not as high as those found in the
literature, but the deposition process is currently being
optimized. Losses are also overestimated as we take a
very low mechanical loss tangent (10−4) for silicon, but
further measurements should help to solve this point.

We have also investigated the temperature depen-
dence of aluminum nitride. The wafers were heated by
a thermal chuck during probing and the frequency shift
of the resonators was measured. In Fig. 9, we report
the experimental relative frequency variations of vari-
ous harmonics for two substrate thicknesses. It seems
that all harmonics have almost the same temperature
sensibility:-34 ppm/K. We have used the Campbell and
Jones approach, which considers that the temperature
effects are caused by the dependency of elastic con-
stants with temperature, and by the thermal expansion
of the layers. This has been added to our scattering
matrix model, and gives almost the same temperature
sensitivity for simulated devices, as can be seen in Fig.
9. This shows that temperature coefficients found in
literature apply well to our experiments. Another fact
is that the thickness of the substrate does not seem to
change the temperature behavior. An early explana-
tion is that the reduction of the substrate’s thickness is
not sufficient to induce a significant temperature depen-
dence change, compared to the dispersion of the results.
Further investigations are needed to determine more ac-
curately the influence of the AlN layer.
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Table 1: Fitted material constants

Aluminum nitride parameters Fitted values Values from literature [12]
c33 (cannot be determined accurately) 395 GPa 395 GPa
mechanical loss tangent 0.1 5.10−4

e33 1.5 C/m2 1.55 C/m2

ε33 9.510−11 F/m 9.510−11 F/m
dielectric loss tangent 0.12 0
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Figure 9: Relative frequency shift with temperature
for various harmonics on various substrate thicknesses.

All modes are located in the same frequency range.

Simulation of geometrical effects
Now that we have shown how to use simple models

to predict the electrical response of FBAR resonators,
and that we have shown how these models are adjusted
to the material properties, we discuss in the following
of this paper the full simulation of effects caused by the
exact geometry of devices.

Angular Spectrum of Waves

The first model we expose is the Angular Spectrum
of Waves. The principle is to consider that the response
of a device is the superposition of the contributions of
all the waves propagating with every direction into the
multilayer. Thus, the method is well suited to consider
the width of the upper electrodes of a resonator. Cal-
culations are performed in two steps: first, the spectral
charge distribution under the electrodes is determined.
This is performed after expanding electrical charge and
potential at the surface on a Tchebyshev polynomials
basis. Then, using the spectral Green’s function at the
surface of the multilayer, which is calculated using the
scattering matrix method described earlier, the relation
between charge and potential is determined. Details
of the calculations are very similar to the ones of a
FEM/BEM method developed to analyze SAW gratings
on a semi-infinite substrate [13], though in our case we
do not really know the singularities of the electrostatic

Green’s function and have to perform a numerical in-
tegration over the surface wave vectors. If only the
electric response is needed, calculations can be stopped
here. A second step is to calculate the acoustic field
distribution in the multilayer. This is obtained by cal-
culating for each wave vector along the surface the gen-
erated fields within the structure. The global fields are
given as the superposition of all these generated fields,
weighted by the spectral charge distribution.

Some early results have been obtained to validate
the model. We have considered a simple resonator,
and compared the response obtained with the Angu-
lar Spectrum model to the one obtained by the classi-
cal monodimensional one. This is shown in Fig. 10.
Resonance and antiresonance frequencies match very
well. It seems also that the quality factor becomes much
lower when shrinking the size of electrodes. But these
are still early results and should be considered with
care. Especially, they should be correlated with those
obtained from a classical Finite Element Method (FEM)
software.

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2650  2655  2660  2665  2670  2675  2680

A
dm

itt
an

ce
 (

S
/m

2 )

Frequency (MHz)

Conductance - 1D model
Susceptance (shifted) - 1D model

Conductance - 2 mm resonator
Susceptance (shifted) - 2 mm resonator

Conductance - 0.2 mm resonator
Susceptance (shifted) - 0.2 mm resonator

Figure 10: Validation of the Angular Spectrum of
Waves.

Finite Element Analysis

For more precise details to be taken into account,
FEM/BEM methods need to be used. In practice, we
use a periodic FEA/BEM approach, which is much
more detailed in two other papers of this congress [8],
[14]. We do not recall the principle here, but the sim-
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ulation method consists in meshing the inhomogeneous
part, that is handled by the FEM part of the model. Ra-
diation in the surrounding environment is calculated us-
ing spectral Green’s functions, which is determined by
the scattering matrix algorithm described earlier. Here
we do not consider periodicity and setγ defined in [8],
[14] to zero.

In a first step we simulate an air-gap resonator us-
ing the mesh shown in Fig. 11: an aluminum nitride
membrane is build as a bridge over the substrate. The
admittance curve is shown in Fig. 12. It can be seen that
it exhibits some irregularities just before the resonance
frequency, that could be accpunted for by the flexion of
the pads supporting the membrane. These effects could
not be seen when using a one dimensional model. We

Figure 11: Mesh of an air-gap resonator.

Figure 12: Electrical response of an air-gap resonator.

then report the simulation of a Solidly Mounted Res-
onator, whose mesh is shown in Fig. 13. For this de-
vice, the geometry effects are even more visible in Fig.
14 than for the air-gap resonator.

Figure 13: Mesh of a SMR.

Conclusion
We have presented an overview of some of the dif-

ferent approaches available for the simulation and the
design of thin film BAW resonators, with emphasize on
the Fahmy-Adler and the scattering matrix model which

Figure 14: Electric response of a SMR.

is a semi-analytical model well suited for simple sim-
ulations of FBARs, but can also be involved in more
complex models. We have characterized the material
properties of AlN deposited at LPMO, though the opti-
mization of the process remains under work and though
more samples need to be measured to improve the valid-
ity of our characterization. We have also shown that ge-
ometry effects affect the electric response of resonators,
so that it is necessary to use more complex models.
In this paper we have given the example of a periodic
FEM/BEM analysis under synchronous excitation, but
we are currently working on a semi-analytical model,
based on the Angular Spectrum of Waves.
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