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Abstract
In this paper, Finite Difference (FD) formulations in
cylindrical co-ordinates have been used to model the
field radiated, in a biological tissue and a viscous
fluid, by a circular transducer embedded in a rigid
baffle . These two media have been described by
models where the attenuation is respectively
proportional to the frequency and to the square of the
frequency.

Introduction
Ultrasound attenuation is of a considerable

importance in theoretical acoustics, non-destructive
evaluation and ultrasound tissue characterisation. For
a wide variety of materials, the attenuation increases
with the frequency according to a power law relation.
In particular for soft biological tissues, the attenuation
is approximately proportional to the frequency
whereas it is obeying to a squared frequency law in
viscous fluids.

Ultrasound fields propagating in such media will
undergo changes in shape not only due to the
frequency dependent attenuation but also due to the
diffraction that can leads to wrong interpretations in
the diagnosis if it is not taken into account.

Finite difference time domain (FDTD)
approximation has been shown to be an interesting
modelling technique for the acoustic wave
propagation. Moreover, the FDTD is relatively simple
to implement since it is a direct time domain method.

The purpose of this paper is to use the FDTD in the
modelling of the field radiated, by an ultrasonic
circular transducer, in biological tissues and viscous
fluids. The numerical results, which are interpreted in
terms of plane and edge waves, are presented in order
to illustrate the absorption effect on the diffraction
phenomenon.

Wave equations
Studies of acoustic phenomena generally employ

an equation which governs the wave propagation.
While a lossless model may be adequate when

absorption loss is very small, attenuation in viscous
fluids and tissues characterisation must be taken into
account and an equation that includes the loss due to
the absorption has to be derivated.

Biological tissues
The model begins with a more complete

expression involving mixed time and space
derivatives. This expression simplifies to a simpler
equation  when one wishes to model the attenuation
behaviour in tissues over a frequency range from 1 to
10 MHz . A tissue model, which provides an adequate
description of the absorptive propagation of
ultrasound has been postulated by Leeman [1]. The
wave equation is modelled by the telegrapher’s
equation of the form :
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where P is the pressure, c is the propagation velocity
and A is a constant depending on the ultrasound
absorption inside the medium since this later is
supposed to be uniform and isotropic.  The acoustic
field will be restricted to the longitudinal waves since
there is no evidence that shear waves can be supported
over significant distances in soft tissues [2]. Hence,
we can write:

t
P

∂
φ∂

ρ= (2)

Where φ  is the velocity potential and ρ the density.
So, the wave equation can be rewritten as follows:
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Viscous media
In viscous fluid media, the propagation equation is
given by [3]:
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where β is a constant proportional to the viscosity
coefficient.

Finite difference method
The physical problem to solve is dealing with the

acoustic field radiated into a half space attenuating
medium, by a circular transducer of radius a [Fig. 1],
having a uniform axisymmetric surface velocity
distribution .
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Figure1: Geometrical configuration of a  transducer
embedded in a rigid baffle

In such a problem having an axial symmetry, the
wave equation will be formulated in cylindrical co-

ordinates where 
θ∂
∂  is close to zero making the

problem two-dimensional.

Biological tissues
For a biological tissue, the wave equation becomes

then :
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Viscous media
For a viscous medium the  wave equation is given

by:
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A square grid is imposed over r, z quarter and
completed by using the symmetry of the problem. We
let: tktandzjz,rir ∆=∆=∆=  where

tzr Nk1,Nj1,Ni1 ≤≤≤≤≤≤  and where t,z,r ∆∆∆
are respectively the increments in r, z and t. Let us
denote by ( )k,j,iφ  the approximated potential velocity
at a point grid ( )zj,ri ∆∆  at time tk∆ .

The stability of the adapted scheme is controlled by
a proper choice of time and space steps. In order to
minimise CPU time, calculations are incrementally
limited for regions disturbed by the propagating
ultrasonic pulse.

Biological tissues
By substituting centred difference formulae for all

the derivatives in Equation (3), an explicit finite
difference scheme is obtained [4]

Viscous media
In the case of viscous fluids, this substitution yields

to an implicit scheme requiring resolution of a huge
system of equations. Hence, an explicit FD scheme is
deduced by substituting only regressive difference
formulae for the temporal derivatives of the Laplacian
in Equation (6) [4].

Numerical results
The waveform of the velocity of the source

vibration is a pulse containing one cycle [Fig. 2].

Figure 2: Velocity  source vibration versus the
time.

Biological tissues
In figure 3 which represents the pressure field on

axis, the edge wave is more attenuated than the direct
one. Hence, it is not an inverse replica of the plane
pulse. This results from the fact that the attenuation of
the wave emitted by a transducer vibrating in a
biological tissue differs from a region to another since
the travelling distance from the source is different.

Figure 3 : Pressure on axis (z=1.4).

z

r

Propagation medium
Rigid baffle

source

0 1 2 3 4
-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5
 

V
(1

0-4
m

m
/µ

s)
c t/a

1.2 1.4 1.6 1.8 2.0
-2

-1

0

1

2

ct/a

P 
( 1

 0
 

5  P
 a

 )

 α=βf
 α=0

WCU 2003, Paris, september 7-10, 2003

1032



Figure 4 : Spectrum of the pressure on axis (z=1.4).

The result of the spectral analysis of the selected plane
wave shows a diminution of the amplitude of the
spectra [ Fig.(4)].

Viscous media
Figure (5) represents the pressure field on the axis
radiated in a viscous fluid. It consists of two distorted
waves of inverted polarity. These distortions are due
to the filtering of the high frequencies which results
from the squared frequency dependency of the
absorption. More the distance on the axis increases,
more the pulses decrease in magnitude. In addition,
since the edge wave travels a larger distance, it is the
most attenuated [Fig.6].

Figure 5 : Pressure on axis (z=0.25).

The spectral analysis of selected plane and edge waves
shows a diminution of the spectra amplitude [Fig.7]
and a squared law dependency [Fig. 8].

Figure 6 : Pressure on axis (z=0.75).

Figure 7 : Spectrum of the pressure on axis (z=0.75)

Figure 8 : Comparison of the law frequency
dependency of the attenuation of plane and edge
waves with the α=βf2 law
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Figure 9 : Instantaneous spatial distribution
of the velocity potential (ct/a=1.25, ct/a=1.625)

The spatial distribution of the ultrasonic potential field
is given by figure 9. The plane wave seen as a line
parallel to the source is followed by the edge wave
appearing as two circular arcs. When the travelled
distance increases, the magnitude of the field
decreases [Fig  9.b].

Conclusion
In this work, FDM have been used to model the
diffracted field by a circular transducer in biological
and viscous media. These simulations show that,
because of the absorption, the diffracted field is
constituted by attenuated and distorted edge and plane
waves.
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