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Abstract
Multi-look processing is a well known technique for

reducing speckle in coherent imagery. This paper in-
vestigates the use of multi-look processing in range
(frequency-compounding) on SAS images.

The coherence between sub-images produced by fre-
quency compounding is determined and a coherence
model proposed. This is used to calculate the level of
speckle reduction for a given number of looks and spec-
tral displacement. This shows that the optimal level
of speckle reduction for a given loss in resolution is
achieved when the spectral windows are displaced by
approximately one third their bandwidth. The level of
speckle reduction obtained using frequency compound-
ing was measured for field SAS images and compared
to the model. The number of looks used can be varied
to trade-off the desired levels of speckle reduction and
resolution loss. The number of looks that maximises
the detectability ratio of speckle reduction to resolution
loss is then experimentally measured.

Introduction
A synthetic aperture sonar (SAS) system coherently

combines the collected data to increase the along-track
resolution of the image. Due to the coherent nature of
the imaging, speckle forms in the images. Speckle is
a multiplicative noise which gives a variance to the in-
tensity of each pixel. This reduces radiometric resolu-
tion. It also reduces spatial resolution. [1]. Speckle can
also have a detrimental affect on some image process-
ing techniques such as segmentation, classification, and
autofocus using contrast optimisation [2].

Multi-look processing, or spatial and frequency com-
pounding, is a well known and effective technique for
reducing speckle noise and is used in ultrasound and
synthetic aperture radar (SAR) imaging. It does how-
ever require a tradeoff between spatial and radiometric
resolution. We wish to determine how to get the best
reduction in speckle noise for a given loss in spatial res-
olution.

Other speckle reduction techniques can also be used,
such as image-domain filters [4], adaptive filtering and
wavelet-domain filtering. They are outside the scope of
this paper.

In this paper we experimentally determine the coher-
ence between the sub-images obtained when frequency
compounding a SAS image and fit a model to it. This

is used to determine the theoretical limit to the amount
the speckle can be reduced. The optimal displacement
of the spectrum of each sub-image is thus determined.
Using this displacment, the number of looks that max-
imises the detectability ratio of speckle reduction to res-
olution loss is shown.

The University of Canterbury has developed a sea-
going towed SAS; KiwiSAS. The techniques outlined
are applied to data collected from this platform.

Speckle Statistics
When a rough surface is illuminated by a coherent

source, the measured field has a granular appearance
with random intensity and phase known as speckle. The
phase of a given pixel is uniformly distributed and the
intensity is negative exponentially distributed with stan-
dard deviation equal to the mean when fully developed
[3].

Over a whole image however, the mean intensity
varies with range and with the presence of targets or
other inhomogeneities. Thus the distribution of all pix-
els cannot be used to estimate the distribution of a sin-
gle pixel. However, a small patch around a pixel, with
constant mean intensity, can be used to estimate the dis-
tribution of a pixel within that patch.

Consider the complex-value image U with intensity
I = |U |2. Speckle contrast is defined as the ratio of
the standard deviation of speckle intensity to the mean
intensity.

Cs ≡
[〈

I2
〉
− 〈I〉2

]1/2
/〈I〉. (1)

For fully developed speckle images, Cs = 1. As the
speckle noise is reduced, so does the speckle contrast.
The signal to noise ratio of a speckle image is defined
as the ratio of the mean image intensity and standard
deviation, i.e.,

SNR = 〈I〉/
[〈

I2
〉
− 〈I〉2

]1/2
= 1/Cs. (2)

When evaluating the speckle contrast or SNR of an im-
age, the contrast is evaluated for several small patches
over the image, so that the mean intensity of a patch is
roughly constant. The median value of all patches is
used, to remove outliers such as those containing tar-
gets. This works well for bland images with localised
structure as is typical for SAS images.
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Multi-look Processing
Multi-look processing, also known as frequency or

spatial compounding, splits the available data into a
number of lower resolution ’looks’ or sub-images of the
object, then incoherently combines them back together
to form an image with improved speckle characteristics
and reduced spatial resolution. This relies on the fact
that the speckle pattern has frequency and spatial de-
pendence while any target does not.

In ultrasound and SAR, compounding is generally
performed in the along-track direction. In SAR this is
because the high Q nature of the imaging means it is
easier to achieve high along-track resolution than high
range resolution. However in SAS, due to the lower
propogation speed of sound, it is easier to achieve high
range resolution than high along-track resolution. For
example, Kiwi-SAS obtains 4 cm range resolution and
16 cm along-track resolution. Thus we have chosen
to perform frequency-compounding, or multi-look pro-
cessing in the range direction.

To perform frequency-compounding, the image is
Fourier transformed in the range direction and multi-
plied by N separate but overlapping windows of band-
width Wi, each separated by a distance of δWi. Each is
then inverse Fourier tranformed, giving N sub-images
Ui. These parameters are related by

Wi =
W

1 + δ(N − 1)
, (3)

where W is the total spectral length of the image. This
results in a resolution loss defined as r ≡ Wi/W .

To combine the sub-images, we sum intensities then
take the square root i.e.,

Û =

[ N∑

i=1

|Ui|2
]1/2

. (4)

This gives a slight reduction in noise standard deviation
over summing amplitudes [6].

We are only considering the case of each sub-image
having the same bandwidth and separation. Moreira [5]
presents a technique using two different window sizes
that claims to have increased speckle reduction for the
same loss in resolution, but this will not be considered
here.

When using overlapped windows, each sub-image
has some coherence, so the speckle noise does not drop
as much as if the looks were completely independent. A
useful measure to compare the effectiveness of speckle
reduction techniques is the effective number of statisti-
cally independent images Neff that are contributing to
the compounded image:

Neff ≡
[
SNRN/SNR1

]2
=

[
1/Cs(N)

]2
. (5)

Coherence of Sub-images
Consider the same object imaged with two different

looks, Ui, Uj with Ii = |Ui|2. We define the normalised
coherence function between these two images as

γij ≡
〈UiUj

∗〉
[〈Ii〉 〈Ij〉]1/2

(6)

If the N compounded sub-images are uncorrelated
(γij = 0 for i 6= j), compounding would result in a
drop of speckle contrast of 1/

√
N . If the sub-images

are correlated the contrast drops as follows [8],

Cs(N) =
1

N




N∑

i,j=1

|γij|2



1/2

=
1√
N


1 + 2/N

N−1∑

i=1

N∑

j=i+1

|γij|2



1/2
(7)

If the displacments between each image are constant,
then the normalised coherence γij is a Toeplitz matrix
[8] with elements

γij = γ(|i − j| δWi). (8)

Now (7) reduces to,

Cs(N, δ) =
1√
N

[
1 +

2

N

N−1∑

m=1

(N − m)γ2(mδ)

]1/2

.

(9)

Determining the Coherence Curve
Fig. 1 shows the measured image coherence of a field

SAS speckle image. The fractional spectral separation
δ between sub-images was increased and the sub-image
bandwidth Wi held constant. Image coherence given
by (6) was measured between all (N − 1) adjacent sub-
images and averaged.

We use a Gaussian to model the coherence curve, i.e.

γ(δ) ≈ exp
[
−(δ/α)2

]
. (10)

A Gaussian model of sub-image coherence has success-
fully been used for ultrasonic images [9]. Justification
for this is given by Wagner et al. [10], who proposed
that the coherence function could be evaluated as the
autoconvolution of the Fourier transform of the square
of the beampattern. In our case, the beampattern is
a sinc function, the Fourier transform of a sinc2 is a
triangular function and the convolution of two triangu-
lar functions gives a Gaussian approximation. The co-
herence curve in Fig. 1 is compared against the Gaus-
sian model with α = 0.32 showing a good match.
To compare, Lorenz et al. [9] determined a value of
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Figure 1: Image coherence of sub-images of field
SAS speckle image, as a function of the fractional

spectral displacement δ. The model is given by (10)
with α = 0.32.

α = 0.707 for frequency compounding of ultrasonic
images and O’Donnell et al. [11] determined a model
for along-track spatial compounding of SAR images
with an equivalent of α ≈ 0.42.

Results
The coherence model in (10) can be substituted into

(9) to determine the theoretical speckle contrast of the
compounded image. The resulting value of Neff is
shown in Fig. 2 as a function of δ, the fractional spec-
tral displacement. This shows that an optimal reduc-
tion of speckle occurs when the spectral bands of the
sub-images are displaced by approximately one third
of their bandwidth. The location of this peak does not
depend on the value of Wi used. It also shows a sig-
nificant improvement in speckle reduction when using
overlapping spectral bands (Neff = 3.4) against using
non-overlapping bands (Neff = 2) for the same loss in
resolution.

To compare, the optimal fractional displacement of
the aperture for spatial compounding of ultrasound im-
ages is 0.5 [11]. Due to the higher measured correlation
in their imaging, this corresponded to the equivalent of
a maximum value of approximately Neff = 2.8.

It is possible to trade off the desired level of speckle
reduction Neff and resolution loss r. Fig. 3 shows the
theoretical value of Neff from the model is approxi-
mately linear with r.

Field Data

Fig. 3 compares the measured amount of speckle re-
duction in a field SAS speckle image to that predicted
by (9) using the Gaussian coherence model and α =
0.32. The measured Neff value is the median value of
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Figure 2: Predicted performance of
range-compounding using coherence model in (10).
Sub-image bandwidth (Wi) is kept constant at W/2.

1 2 3 4 5 6 7

2

4

6

8

10

12

14

16

Resolution loss (r)

N
ef

f

Measured
Model
N

eff
 = r

Figure 3: Range-compounding performance for
δ = 1/3. Measured data is from field SAS speckle

image, model is predicted from coherence model (10).

the ratio of mean squared intensity to variance of in-
tensity of various patches in the image. It shows the
measured amount of speckle reduction is approximately
half the optimal value predicted by the model. This is
similar to results in ultrasound [9].

Detectability

In ultrasound, studies have shown that to optimise
the detectability of lesions, you should maximise the
ratio of speckle reduction to resolution loss Neff/r [12].
However, it has been shown in ultrasound that speckle
reduction does not increase this figure of merit [9].
Fig. 3 shows Neff > r, therefore speckle reduction
does increase this detectibility figure in SAS. Fig. 4
shows the optimum number of looks for detectability
is N = 4.
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Figure 4: Detectability ratio Neff/r versus number of
looks for field SAS speckle image.

Conclusions

We have investigated the use of frequency com-
pounding on SAS images. The coherence curve be-
tween sub-images was determined and a Gaussian was
found to be an accurate model. Using this model,
the level of speckle reduction for a given number of
looks and given spectral displacement can be deter-
mined. This shows that using many overlapping win-
dows gives a larger reduction in speckle for the same
resolution loss. (Up to 1.7 times larger.) The reduc-
tion in speckle contrast, calculated using the coherence
model, was found to be optimal for a displacement of
the spectral windows by approximately one third of
their bandwidth. Using this displacement, the number
of looks can be varied trading off the amount of speckle
reduction and resolution loss.

Range compounding was performed on field SAS
data. The measured reduction in speckle was approx-
imately half that predicted by the measured coherence
model. The reasons for this could include less than full
coverage of the spectral band and structure in the image
increasing sub-image coherence.

The detectibility ratio of speckle reduction to resolu-
tion loss can be improved by frequency compounding
and is optimum for N=4 for our system. This gave a
resolution loss of 2 and a measured Neff = 2.8.
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