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Abstract

A high order asymptotic model of the dynamic
behaviour of solids with thin laminates is suggested.
The main advantage of this approach consists in the
essential reduction of the problem dimension when
dealing with a reasonable frequency range. The
respective agorithm is a shorter (and faster)
alternative to the direct calculation of the wave spectra
and diffraction phenomena for different applications
in acoustics. For this purpose an approximate dynamic
model of thin laminate under non-classical boundary
conditions on its faces is deduced. The arbitrary
number of plies and its layup, as well as the type of
media and anisotropy, is considered. The internal
relations between the values of stresses (or pressure)
and of displacements on the laminate faces are
derived. Three cases are investigated in details: solid
substrate, covered by anisotropic elastic laminate; two
solids with anisotropic elastic laminate in between;
two solids with athin intermediate fluid couplant.

I ntroduction

Despite the existence of direct methods to calculate
the spectra of layered media [1-3] the simple and fast
algorithm for complicated laminates is still an open
guestion in view of problem dimension, stability, and
gualitative analysis. There are alot of pure numerical
papers on different aspects of ultrasonic inspection
(see, eg. [4-6] with respective reviews) using direct
methods. Those devoted to asymptotic approach are
not so numerous [7-11] and their luck consists in the
insufficient accuracy of model and cumbersome
substitution of asymptotic seriesin global propagation
matrix. In what follows the so-called asymptotic
integration method [12-14] is used. It iswell known as
the powerful tool in the theory of thin plates and
shells. In hydrodynamics some similar techniques was
used in the theory of shallow water (e.g. [15,16]).

Foundations

To begin with obtain the relations between the
values of displacements and stresses on the faces.
Consider elastic laminate of arbitrary number of plies
and their stacking sequences. Assume the perfect
contact between plies. On the faces of laminate there
are prescribed stresses or/fand displacement, but at
least one boundary condition must be formulated in
terms of displacement. Each infinite ply should satisfy
general 3D dynamic equations of elasticity with
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arbitrary material anisotropy and respective boundary
conditions.

Suppose that the ratio € = h/l <<1lwhere H =2h

is a total thickness and | is a daraderistic
wavelength. The respedive timescde of dynamic

process has the order O(e"). Introduwce Cartesian
(X,X3=2z)and  decompose the
displacenents (U,U; =W) and stresses 0, into

coordinates

asymptotic € -power series
d=heMdo+ed' +..}, d=(W,U,,U,)".
It iseasily to show that the only meaningful values are

T =0,A = -1 and dsplacements and streses in eah
layer satisfy the chain of reaurrent relations

02d° =G H(Ad*? - D,d?),
t; =G D'd*" +G9,d°,
ty =G[D'd*'+G.d,d°,
where the dimensionless longitudinal coordinate

X and transversa coordinate z are normalized over
h and |, respedively. Here

M O 0 9, o0,C
D=0 9, 9, 0 Of,
@1 a2 0 0 OE
and the stressvedors and operators
[0, LC (0,,C
t = Cy = C
z 2z "X 12
1. E B2E
Go =G3s5. G =G, G =Gigp"
G, =G3e”, D;=DG, +G D",

— A2 16245~ T
A=po; - DG16243:)

are dimensionless using reference values of Yourg's

moduus, mass density and time. Matrix-minors are

extraded from the stiffness matrix Giggigg which

may have no zero blocksin ead layer.
The caeful analysis of leading terms using reaurrent
relations permits us to derive relations between the

values of streses t,and dsplacements d on the
upper and lower faces (ti; and d*, respedively) and
their half sum and helf difference
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When proceeding to the problem of solid with
laminated coating or to two solids with laminate in
between the scaling remains the same and timescale is
O(1) . Thus, the obtained formulae give the necessary

answer how to reduce dimension: to consider
respective relations for t; and d* as so-called

impedance boundary conditions (IBC) for two solids
or for single solid.

Second order model for N-layered laminate
First, let us present the general dimensional results,
which look as follows

At, =2d_, t_ =0 (therelativeerroris O(€) );
=fo+ > M a7 -a +(Z hNT b,
_= —(Z hiN; )A‘ld_ (the error is O(g?))
and coincide with the desired IBC for two solids with
alaminate in between. Here h; isathicknessof jth
layer and other operators are

A= Zh Goi, AT = thegﬁ ,
N=DG,G,", M =N+N'
where summation 2. assumes the sum over all

indices smaller (larger) than | and the ply numbers

begin from the lower face.
Second, transform these relations in the form
convenient for single solid (half-space) with laminated

coating: under given stresseson itsface z=z*
t, =t} (theerroris O(€)),
= {1+ (Z hiN; )}t; (the error is O(£?))
and under given displacement on its face
d™ =d" - At; (theerroris O(¢g)),

el
_E,U%zhj[m (a5 -a7)+ N{A—ANJE{;

(the error is O(g?)),

respectively. In a similar way the relations of high
order can be derived. For the sake of shortness let us
represent principal results for asingle layer.

High order model for a single layer
General relations of the order O(g°)acquire the
form
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O 3
d_=hGlt, +G;'-hG,NT +%D1G51A—
O

1 1 0
G,'A-=B B-ZAG,D,/G A,
1Go BA 5 E"‘% 5 @30 1o Ed +

Oh? 0 h*@_ 4,4
+Glr—B+ D,G,°AG, D, +
0D 3 5% 120 oY1

1

ZBG?B%_,

)
'1§AG{)1D1 +

(B=A+D,G;'D,)

4
h—AG

+ 1D G'lB%j +A%——G'1A@j
3 T

and may be rewritten agaun for acoated solid as
t_+ h{N +hL, +h®S,+h®R , + h4P5}1+ -

~2h{L £hLNT +h2M , £h%Q Ju* =0, (2)

or

d_+h{NT £hL] +h?F] £h3HT +h“a] Jd, -
~hG L hN +h2N, £ R, +

+hT, £hoY )t =0 @3)
where operators are expressed via those from general
formulae. Formulae (2) and (3) correspond to the
problems of given stresses and given displacements on
the coating surface.

Fluid coupled solids

The main difference consists in the type of the layer
medium. Let us investigate two cases. compressible
and incompressible fluid. Inside the layer 3D
equations of fluid dynamics hold, on the interface the
transversal displacement must be continuous, the
normal stress should satisfy the equation of pressure
balance and the tangent stresses are absent (when
dealing with inviscid fluid). All this leads to the
dightly changed asymptotic series for the
displacement field in fluid

W = he? (wo +ew' +)
U, = he“l(ug +euy, +)

and for the naturaly introduced displacement
potential in the Newtonian compressible fluid

w=h2et g0 +ept+. ).
The corresponding recurrent formulae are obtained
from the equation of motion

o' =Ayp'™?, A=0f -07
the expressions of displacements and pressure p
W=0 ' ug =0,4", P =-0y
and the pressure baI ance on the interfacas



Here stresses and pressure are normalized over pc2
(p isafluid mass density, C isits sound speed) and
last term in (4) is responsible for the contribution of
gravitation

,_ gL
g="2

===, g=9.8m/sec’.

The procedure of asymptotic integration is much
simpler than for solid layers and the following 2D

dimensional IBC of the order O(slo) are derived
finaly
—0, +(p. +P)IW" +0, —(p_ +p)gW ™ =

O 2 4 6
=—hpoz- "+ 20 gz 1M gay ow),
o 3 15 315
(B=c™of -07) (5)
he{-o7, +(p. + p)aW* —a, +(o_ + p)gW =
N 2 4 6
:—atzg_+h_B_h_B2 +£B3_
0 3 45 945
8
_ 1343n B“%W _W_)_
38102400

They are completed by the condition of zero tangent
stresses.

In the case of incompressible fluid there are a few
technical changes but the final dimensional IBC look

quite similar with the only replacement B = -02,

Numerical tests

Since the partial waves are basic elements for any
spectral problem the simplest calculations of the
response to incident P- or S'wave in elastic half-space
are reasonabl e to characterize the numerical accuracy
of model. To be brief let us represent just a few
media.

Table 1 : Parameters of the media.

Typesof media ¢, cg or c[misec] P [kg/m’]
Polystyrene(Po) 2350 1150 1060
Aluminum (Al) 6320 3080 2700
Epoxy (Ep) 2800 1100 1300
Water (Wa) 1400 1000

The response to incident wave from the first half-
space gives rise two reflected waves and two
transmitted waves (when dealing with two solids).
Their complex magnitudes are calculated by the exact
method using propagation matrix and by approximate
asymptotics using relations (1)-(3) and (5). In Figures
1-4 the typical relative mean error is shown for two
solids (Al-Ep-Po), coated half-space Al-Po (substrate)
with stress free face and Al-Ep (substrate) with
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clamped face, and for the fluid coupled solids (Po-
WaAl, water presumed to be compressible). The
angle of incidence is measured from the normal to the
interface.
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Figure 1 : Al-Ep-Po; angle of incident P-wave is 50°
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Figure 2 : Al-Po; angle of incident Swaveis 10°
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Figure 3 : Al-Ep; angle of incident P-waveis 10°

As one can see for solid coupled solids our results
agree well with exact ones when
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H/l <0.2+0.25.
The natural restriction for us is the first quas
resonance frequency of thin layer.
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Figure 4 : Po-Wa-Al; angle of incident Swaveis 10°

As far as fluid is concerned the acarracy of model is
higher and presented approximation is valid when

H/I <0.3+0.35. Since the media ae very contrast
the first quasi resonance frequency of fluid layer is
H/l =0.5. The cae of incompressble fluid is also

cdculated and the interval of model applicability there
is abou two times larger then for the compressble
fluid.

Conclusion

The general asymptoticdly justified 2D high order
approximate model of solids with thin coating or inner
laminate is derived. It is applicable for stratified
structural members and fluid coupded solids. As
shown the model is low frequency with resped to the
thin laminates but may be high frequency with respea
to the main thick solids.
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