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Abstract

In sixtieth the Rayleigh-type waves of bending
nature (RTWBN) have been considered in isotropic
plates using 2D Kirchhdf’ s plate theory. Since then
they remain attradive for ultrasonic gpplicaions but
are dll poaly investigated. During last yeas
RTWBN are reveded in anisotropic media & well.
The @ntribution gresented is an attempt to clarify the
RTWBN nature in isotropic plate andits snsibility to
the mathematicd todl required what is the main topic
of this contribution. As down, the description d
leading part of RTWBN can be essentialy simplified
and its wave spedl is cdculated analyticdly. The
results agree with those of experiments and FEM
cdculations.

Introduction

There ae a lot of papers and a least two
monagraphs whose aithors considered RTWBN.
Many of them investigated these waves on the basis of
Kirchhdf s theory [1-3] using classcd boundry
condtions, despite the fad that equations and
boundiry condtions are of different acairracgy there.
Thus, the more acarate @mnsideration involves both
high oder equations and modified boundry
condtions. The dtempt to use Timoshenko-Reisaer-
Mindlin theory (which is asymptoticdly nat justified)
has been performed in [4] with comparison to the
results of experimental measurement and FEM
cdculations [5,6]. In this paper the corred¢ RTWBN
model using refined Kirchhdf’' s plate theory is used
and the influence of corred boundxry condtions is
studied. Upon this estimate the high order equations
are used to describe the leading part of desired
RTWBN with respedive eplanation why it works
and what is essential in the nature of these waves.
Finally, the wave speed can be cdculated using two
simple analyticd expresson and the results are in
perfed agreanent with experiment.

Influence of boundary conditions: Kirchhoff’'s
theory

Consider a semi-infinite dastic plate with a total
thickness H =2h, made of isotropic material with
Yourg moduus E, Poison's ratio v and mass
density p, and occupying a region X, =0, in its
middle plane (see Figure 1). From the asymptotical
viewpoint when the plate is thin, i.e. € =h/L <<1
where L is a longitudina scale (wavelength), and
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when timescale T = O(e™}), the normal deflection
W is sought in the form of asymptotical power series

w=Le (w0 +ewt +..). (1)
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Figure 1 : Plate geometry

According to the usual Kirchhdf' s theory the normal
deflecion w = w(X,t) and satisfies the eguation
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and boundry condtions on the stressfree elge in the
form of normal stress cougde and Kirchhdf' s dea
force dsence

)

When see&king afreetime-harmonic RTWBN
w= Aei (ct—kyxq ko ’ kl >0
the respedive value of dimensionlesswave speed
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has been oltai nedlfirst in[1] and equalsto

SD:\/(].—V)(_]-"'BV +2V1-2v +2v2), (4)
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But due to (1) the aror of equation (2) is O(£?) and
the aror of (3) is O(€) . The question d interest isthe

influence of the modifications of boundary condtions.
As follows from the boundary layer analysis [7] the
seoond ader modificaion o boundry condtions (1)
aqjuiresthe form

+O(V’).



WCU 2003, Paris, september 7-10, 2003

M, + xhd;M;, =0, x = i(Zn ~1)° =1.260497

The dispersion equation F(s?,0,v) =0, where
o=xkh=0, adways has a unique root
s(a,v)D(O,l). The plot of this function is own in
Figure 2. As one can seein the origin s=S; and

s —» 1 for large O, so the difference S—S; is less
than 1%.
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Figure 2 : Roats s at different Poison' sratio
v =0,0.8(3),0.1(6),0.25,0.3(3),0.41(6), 0.5
(curves1,2,...6,respedively).

Since v* is small quantity the expansion d S into
power series with resped to o

s:s@+sla+sza2 +olo?),
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explains the low sensibility of roct to the perturbation
of boundary condtions. But the influence of the main
differential operator is esential.

High order equations of plate bending

Further improvement in the plate modelling med
considerable technica obstades caused by taking into
acourt both the anti-plane boundry layers and the
plane one for the boundary condtions of high-order
iterations. At the meantime the refinement of the
homogeneous Kichhdf equation may be eaily dore.

The equation o plate bending with the aror O(g®) is

deduced using 3D el asticity [8] and reaurrent formulas
for next terms of asymptotic expansions (1), and is
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reduced to a final form in terms of norma defledion
w

2 4
20nL+ 2, (V)h? + a,(v) - 0?2 +a2(v)h—zafA§5w+
C C

2 2
+dA’w=0, (5)
where C, is dea wave speed and ak(v) are

coefficients. The evident analogue with equation (2) is
just in the rredion d term of inertia. For afreeplate
vibration mode, which satisfies the mndtion Aw <0,
onexpressing Aw uponthis analogue from (5) and on
substituting again into (5) the high order equation d a
plate in terms of effectiveinertia[8] yields

n
{082 - 2phew?jw =0, w? = wzz B (v)Hcﬁg ,
=0 2

where B, (v) are oefficients. For indices n=01,2,3
the relative truncation error of the respedive high-

order operator is 0(8 2n+2). The assumption Aw < 0
corresponds to many pradicaly important cases. In
particular, it holds for the propagation vibration
modes. For the latter, corredion d the equation d
motion seems to be more important then that of
boundxry condtions. As shown below the last feaure
may also charaderise the most important componrents
of RTWBN because they obey the same assumption.

Wave speed description

From the &ove follows the dficient way to
cdculate the spead of RTWBN. The Kirchoff’ stheory
gives us two partial waves and ore of them with
small er attenuation is resporsible for the locdi sation.
It adso sdtisfies the inequality Aw<O0. In what
follows we ded with this partial wave and with the
respedive roct only.

In acordance with (2) and (5) one can seethat the
charaderistic root of equations is the same but the
meaning of root for equation (5) differs

4 _ 2phw?
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at different indices n. In addition ore may set S= S
given by (4) in the right hand side. Then, the wave
spedal ratio is expressed from (6) and improved at
n=0123. Findly we arive a the mplete

description d the wave speead using two analyticd
formulae(4) and (6).

S

Comparison with experiment

Compare our results with those obtained by P.
Lagasse and F. Oliner [5,6]. Their results of the wave
speed measurement are in a good agreement with
FEM cdculation. To use the same scde let us



introduce the dimensionlessfrequency Q = wH /cg,
where cy is the Rayleigh wave speal, and
transform the eguation (6) as follows

< prf _ [ 8 (kh)  _ce
“ :Bkél%g'\/w—v) b YT,

The results of cdculation for Poisn's ratio
v =0.39 are shown in Figure 3. The letter K marks

the arve for classcd Kirchhdf's theory, Kg

denotes the same with refined boundry condtions
(n=0), and numbers 1,2,3correspondto theiteration
indices in formula (6). Balls represent experimental
measurement of the wave spedl [6]. As &, thereis
only a dlight difference between the airves K and

K r (pradicd coincidence), i.e. these results are now

asymptoticdly justified within the second aoder
asymptotic eror. lteration n=1 gives the
intermediate results but when using two iterations
(n=2) the wave speaed matches well to the
experimental data. The result of third order iteration
(n=3) agrees with experiment quite good. The
additional curve, marked by T, isobtained in [4] using
Timoshenko-Reisqer-Mindin theory of plate. It
dightly deviates from the airve 3, espedally at large
frequencies where we hope to ded with a better
approximation. Let us discussthis fad now.
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Figure 3 : Comparison d numericd results

What and why?

As dhown the description oliained gives result of
good quality despite the fad, that a very restricted tod
isused. Namely, just the iteration d the main operator
withou changing boundry condtions and
substitution o the roat for one partial wave leads to
this. To understand the matter let us imagine the
corred high oder model — bah operator and
boundry condtions. A set of charaderistic roots
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contain two, which are modified roots of Kirchhdf' s
model, and aher “parasitic” ones, which describe
solution d high variation nea the elge and high
attenuation when far from the edge. By the way they
are ahit contradictive, since the initia long wave
asymptotic assumption demands a slow variation and
a large longitudina scde L. They must be very
sensible to the modificaion d boundxry condtions,
but the lessattenuated comporent islow sensibleto it.
And above we improve exadly this partial wave.

As far as Timoshenko-Reisqier-Mindin (TRM)
theory is concerned let us have alook at the coommon
and at the difference with the &ove. Assumptions of
TRM differ from Kirchhdf' s theory and the
additional rotation inertia is involved. After
simplificaions the main operator can be rewritten in
the form

O 2 h2 ZD 2 20p) —
2phrl+my (V)h*A+my (V) —- 07 Py w+dAw =0,

O C; O
similar to (5) but of less order and with dfferent
coefficients. The respedive boundry condtions
aqjuiretheform

My, =0, My, + Xho,M 4, =0, P, =0,
which daso contains one term, different from
Kirchhdf s theory. So, it is not asymptoticdly
justified. By the way, Reisqier has shown [9] that in
the long-wave (and low frequency) limit of his theory
these threeboundry condtions are reduced to two

My, + Xch0:My, =0, P, =0
and X;=1.264 is close to X . The happiness of

TRM theory is in its good description d low
frequency phenomena & well as in high frequency
behaviour of Rayleigh asymptotics of plate modes. Its
“parasitic” roots interads happily with plysicdly
meaningful roots arrived from classcd Kirchhdf' s
theory.

Conclusion

The performed analysis exhibits me essentia
properties of the ealge bending waves in a thin
isotropic plate. First, it concens the posshility to
describe this wave & relatively high frequencies
where the average 2D plate theory is used very
seldom. Second, it clarifies the nature of this wave.
The leading part mostly resporsible for the wave
locdisation can be singled ou. Its behaviour is
determined by the leading part of the differential
equation d plate bending and then it is improved
when taking accourt of the highest order operators. Its
sensibility to the improvement of the boundiry
condtion can be negleded. Other partial waves arisen
in this representation must be very sensible to the
perturbation d boundxry condtions. Third, such an
important acustic charaderistic as wave speed may
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be predicted very essy with high acaracy by
formulae(4) and (6).
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