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Abstract

   Using the acoustic ray model for planar surfaces 

applied to acoustic microscopy investigations, we 

estimate the influence surface specimen inclination, ,

as well as the influence of the specimen curvature 

radius of convex, or concave, surfaces, on the elastic 

modulii vary with surface tilting with a shift of up to 

20% for a 35° inclination. A universal formula: G/G 

= E/E = 1  cos  is derived and used to determine 

the exact values of these constants. Similarly, for 

curved surfaces, it is shown that the curvature has a 

great effect on the determined elastic properties. Such 

effects are better investigated in terms G/G and 

E/E, found to reach 20 % for small convex radii and 

even higher for concave surfaces.

Introduction

   The scanning acoustic microscope [1, 2], SAM is 

becoming one of the most promising and challenging 

tools for nondestructive, non contaminating and non 

contacting investigations. It is receiving a great deal 

of interest by, materials scientists, biologists, 

researchers in the field of applied mechanics, physics 

and mathematics due to its potential applications in 

the study of materials in many fields: crystallography, 

biology, industry, microelectronics, micro-metallurgy. 

Such an instrument can be used to measure 

propagating wave velocities in order to determine 

elastic constants, anisotropy, thin film characteristics, 

anisotropy,  to study of living cells.

   One major advantage of the SAM method is its 

application to samples without any prior 

preparations. Hence, planar, inclined, convex and 

concave specimen could be investigated. However, 

mathematical and physical models proposed to 

explain experimental results [3, 4] have to be 

modified according to the geometry of the specimen 

which greatly affects the reflected acoustic beam 

paths causing variable phase differences between 

generated and reflected beams ; leading thus to 

different acoustic materials signatures and hence 

variable wave velocities of the propagating modes. To 

overcome such difficulties and to be able to introduce 

necessary corrections in order to obtain real 

parameter values we propose the application of the 

acoustic ray model to tilted surfaces [5, 6] and 

nonplanar (convex and concave) surfaces [7, 8]. Only 

few typical results are presented.

Scanning acoustic microscopy principle

Figure 1a shows a schematic diagram of a SAM 

working in the reflection mode. The acoustic signal

generated by a piezoelectric transducer propagates 

into a delay line (usually a sapphire rod) at the end of 

which a spherical lens is manufactured. Such a lens 

focuses the acoustic beam either on the surface or into 

the subsurface of the sample through a coupling liquid 

that ensures good wave propagation. After having 

scanned the specimen, the reflected beam (full of 

information) will be collected by the transducer that 

acts now as a receiver 
  

       Transducer         z
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                                                     Coupling liquid

Planar sample (a)

Figure 1: Schematic diagram of the acoustic part of a 

SAM, in the reflection mode, applied to planar, 

inclined, convex and concave surfaces.

The principle of quantitative micro-

characterization (or microanalysis) is based on the 

measurements of the so-called acoustic materials 

signatures, also known as V(z). Theses signatures are 

obtained by recording the output signal, V, as a 

function of defocusing distance, z, when the sample is 

displaced along the z axis between the focal plane and 

the lens. Such a response is the result of constructive 

(b) inclined (c) convex        (d) concave
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and destructive interference between many leaky 

waves [9] whose determined velocities give valuable

information on elastic properties.

Acoustic Ray Model

Planar surfaces

The acoustic ray model for planar surfaces was 

first proposed by Parmon and Bertoni [3. According 

to this model, simple calculations of the phase 

difference, , between axial mode and leaky 

Rayleigh wave phases give:

= 4 fz(1  cos R)/VRsin R (1)

where f is the operating frequency, z the distance from 

the focal plane, and R the critical angle at which a 

Rayleigh wave leaks its energy back into the liquid 

when propagating along the liquid/solid interface with 

a characteristic velocity VR. Periodical deep minima, 

with a constant spacing are found for  = 2 . The 

period, z, between two successive minima or two 

successive maxima in the V(z) responses is then given 

by:

z = VRrsin R/2f(1  cos R) (2)

Under usual operating SAM conditions, this period is 

related to Rayleigh velocity, VR, of the most 

predominant propagating mode, by the relation:

VR = Vliq/[1  (1  Vliq/2f z)
2
]

1/2
(3)

Inclined surfaces

Most research work was concerned with planar 

objects onto which different types of SAWs propagate 

with typical characteristic velocities, but little was 

devoted to inclined or nonplanar surfaces. For inclined 

surfaces, following the same steps as those proposed 

for planar objects and taking into account the sample 

inclination of  degree (Fig. 1b), the apparent phase 

difference between the axial and Rayleigh rays is 

found to be, after all calculations and simplifications

a = /cos (4)

Therefore, the period of flat surfaces, z, would be 

different from apparent periods, za, for oblique 

surfaces. Hence, one can readily write:

za = zcos (5)

It is clear that both a and za are function of not 

only the specimen characteristics but the inclination 

angle as well. More over we notice that for a null 

inclination ( = 0) we obtain the expressions 1 and 2  

of planar surfaces. The expression of apparent 

Rayleigh velocity, VRa, for oblique objects, is obtained 

when z is replaced by za in relation 3. Hence, the 

apparent Rayleigh velocity becomes [6]:

VRa = Vliq/{1  [1  (1/cos )(1 -  (Vliq/VR)2 ]2}1/2 (6)

Nonplanar surfaces 

SAWs can exist on surfaces with simple or 

arbitrary curvature; in the latter case the situation 

becomes considerably more complex and much less 

well understood. Therefore, the acoustic ray model 

applied to SAM configuration can be modified to take 

into account the curvature radius effects, rc. This is 

ilustrated by figures 1c and 1d where it can be seen 

that the reflected wave reaches the transducer after 

having scanned the arch rather than the straight line 

normally taken in the planar case. Thus, following the 

same steps as for planar model and taking into 

account wave paths, the phase differences for convex, 

cv, or concave, cc, objects becomes [7]:

(7)

where the upper and lower signs stand for convex and 

concave surfaces, respectively. This relation, when 

computed, allows the determination of apparent 

acoustic parameters (periods, velocities, elastic 

constants, etc.)

Inclined surfaces effects

The effects of inclination on apparent Rayleigh 

velocity is better described by relation (6): it decreases 

as  increases. This dependence, that coserves a 

similar trend, changes in magnitude for each material, 

as a result of the presence in the expression of VR

which is a characteristic of each solid. Therefore, to 

overcome such a limitation, we investigated relative 

variations, i.e. we normalize the shift of each material 

to its own characteristic Rayleigh velocity. Simple 

calculations of V/V give:

V/V = |VRa -  VR |/VR = 1 - (8)

This formula shows the inclination effects on 

apaparent velocity. Its universality comes from the 

fact that it can be applied to all types of materials. 

This behavior is better illustrated in figure 2a

displayed in terms of relative velocity variations as a 

function of . It is clear that for small inclination 

angles one obtains errors of few percents only, 

whereas for higher sample tiltings errors of 10%   can 

be introduced

Since elastic constants (Yo

shear modulud, G) depend on proapagating wave 

velocities they should be influenced by surface 

inclinations. Using familiar relations of elastic 
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constants and following the same procedure as above, 

we derive expressions of relative variations of elastic 

constants such that E/E = |E - Ea|/E and G/G = |G -

Ga|/G to find after all calculations and simplifications 

the following relation:

E/E = G/G = 1 - cos (9)

A close analysis of this expression shows relative that 

modulus have the same behavior in trend and in 

magnitude. This universal dependence (for all 

materials and both elastic constants) is better 

ilustrated in figure 2b. It can be seen that as the 

inclination angle increases the introduced errors 

increase as well to approach values as high as 20 % 

for 

lies not only in the correction of measured acoustic 

parameters when the inclination is known and vice 

versa but in their universal applicability for all types 

of materials: heavy, light, medium, slow, fast, etc.

Figure 2 Inclination effects on relative variations of 

(a) Rayleigh velocity and (b) elastic constants.

Nonplanar surfaces effects

Defocusing effects on apparent periods

The quantified effects of curvature radii on 

experimental acoustic materials signatures were first 

reported by Hadjoub et. al. [7]. In the present paper, 

we make use of the relation (7) to calculate apparent 

periods zc as a function of defocusing distances, z. 

this is accomplished, when a = 2 , for a series of 

calculations carried out on several planar structures.

Typical specimen defocus dependence on apparent 

periods is better illustrated in figure 3, for which a

radius of 2.75 mm was chosen for both convex and 

concave materials: quartz ( ), glass ( ), 

stainless-steel ( ) and tungsten (o o o o). The 

upper set of curves was obtained for concave 

structures, whereas the lower set for convex materials. 

It is clear that, for increasing defocusing distances z, 

apparent periods zc of each material decrease for 

convex structures and increase for concave surfaces. 

The onset of zc variation near the focal point (z = 0), 

represents the z periods of the given material having 

a planar surface. This onset differs from one material 

to the other as a result of their distinct acoustic 

parameters.

For small values of z, near the focal point, no 

much change would be expected because the distance 

traveled by Rayleigh waves on the arc is so small that 

it can be considered as a straight line. Therefore, 

apparent periods remain almost constant for both 

concave and convex structures and approaches the 

values of planar surfaces of a given material.

Figure 3 Defocusing distance effects on apparent

periods for convex and concave quartz ( ), 

glass ( ), stainless-steel ( ) and W (o o o).

Curvature radii effects on apparent periods

To investigate the effects of curvature radii on 

apparent periods, we repeated the above analysis for 

each convex and concave material but with varying 

diameters. The resulting behaviors of the curves were 

so similar that any comments which apply to glass 

will also apply to tungsten, stainless steel and quartz. 

Figure 4 illustrates typical variations of calculated 

apparent periods zc for concave and convex 

structures, as a function of curvature radii rc at a 

defocusing distance z = 500 m. It is clear that the 

general trend of these curves, when rc increases, is: an
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increase of zc for convex materials but a decrease for 
concave structures 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 Calculated apparent periods zc, for convex 
and concave glass structures versus curvature radii, 
together with the periods of its planar surfaces (- - --) 

 
Curvature radii effects on elastic constants 

The influence of curvature radii on elastic 
constants is a consequence of their dependence on 
velocities; the latter parameters depend in turn on 
periods. Such effects are better illustrated in figure 5 
in terms of relative elastic constants, E/E and G/G 
as function of curvature radii for convex (a) and 
concave (b) glass materials.  

 
 
  

 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 Relative variations of elastic constants for 
convex (a) and concave (b) glass materials. 

It is clear that for shift, from real values of up to 
20% were obtained for small convex radii; these shifts 
for concave structures are even higher. Whereas, as 
the radii increase the curves decrease; this is due to 
the fact that the surface arch gets wider until it tends 
towards a straight line. Therefore, the curves tend 
asymptotically to zero, i.e. towards the planar surface 
real values. Such curves are important in introducing 
correction to measure, via a SAM, exact elastic 
parameters of convex or concave surfaces or find the 
concavity and convexity radii. 
 

Conclusion  
The influence of inclination angles, convexity and 

concavity of different materials on elastic parameters 
is put into evidence via the application and/or the 
modification of the acoustic ray model. Hence, it is 
shown that the effect of the geometry of the samples 
can be corrected to get their real measured values, 
when a SAM is used, without any prior surface 
geometric preparation 
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