
  
  
  
  

  
  

THE ROLE OF ANISOTROPY IN ACOUSTICS OF CRYSTALS 
 

V.I. Alshits 
Institute of Crystallography RAS, Moscow, RUSSIA 

alshits@ns.crys.ras.ru

Abstract                          (                        (2) ,) 2
ααα ρ AA cmm =

   The paper presents a short review of some basic 
theoretical results in the acoustics of anisotropic media. 
It includes: the general theorems related to phase 
speeds and polarization vectors of three bulk-wave 
eigen-modes in arbitrary elastic media; the topological 
classification of polarization singularities for plane 
waves; the conditions for the occurrence of the 
phenomenon of energy concentration; the general 
criteria for the existence of different classes of surface 
acoustic waves in media with different couplings; and 
some other topics.  

where (mm) ≡ Q is the so-called acoustical tensor 
with components jklijklijk Qmcmmm ==)

ijkl

( , ρ is the density 

of the medium and c  is its elastic moduli tensor.  
   In isotropic bodies there are only two independent 
(and certainly spherical) phase speed sheets cα(m): the 
degenerate sheet c1 = c2 = ct = (µ/ρ)1/2 and the separate 
sheet c3 = cl = (λ/ρ)1/2, where µ and λ are the Lame 
coefficients. The latter relates to longitudinal waves 
polarized along the wave normal: Al || m, and the first 
one – to transverse waves arbitrarily polarized in the 
plane orthogonal to m: At ⊥ m.  

   This work was supported by the Russian Foundation 
for Basic Research (Grant no.01-02-16228). 

   In crystals, normally none of the three isonormal 
waves is purely transverse or longitudinal. And their 
speeds cα  are generally non-degenerate.  However 
along some specific directions m even in triclinic 
crystals it is possible propagation of transverse or 
longitudinal or degenerate elastic waves. Such special 
directions are called respectively transverse and 
longitudinal normals (mt and ml) and acoustic axes 
(md). As was proved by Fedorov [1], the equation 

 
Introduction 
   The role of anisotropy in crystalloacoustics is not at 
all reduced just to variations of wave characteristics for 
different directions of propagation. Anisotropy creates 
also qualitatively new properties of elastic waves and 
acoustic phenomena that have not got close analogues 
in isotropic media. Some of them have already found 
their practical applications in real devices.  

                       (3) 0][2 =×⋅ ttt mQmQm   A theoretical description of elastic waves in 
anisotropic materials is a very non-trivial problem. 
Impermeability of the wave equations for media of 
unrestricted anisotropy to explicit analysis has required 
development of new theoretical methods that allowed 
obtaining final conclusions without hopeless direct 
calculations. As a result, during the last few decades, 
due to contributions of many researchers from different 
countries, the theory of elastic waves in anisotropic 
media gradually became an independent branch of 
modern crystalloacoustics. 

determines lines of solutions for transverse normals 
mt on the unit sphere m⋅m = 1. Intersections of such 
lines must occur along longitudinal normals ml, which 
satisfy the equation [1] 
                                m .0Qm =× ll  (4) 
Kolodner [2] has shown that for any crystal this 
equation always has at least three solutions. On the 
other hand, in any crystal, apart from a transverse 
isotropic one, the number of solutions of Eqn.(4) can 
not exceed 13. In particular, exactly 13 longitudinal 
normals always exist in cubic crystals. For a 
transverse isotropic media Eqn. (4) is satisfied by any 
direction in the basal plane and for the wave normals 
belonging to a cone and making an angle 

 
Elastic bulk waves 
Some basic concepts 
   Consider an infinite elastic medium of unrestricted 
anisotropy in which a plane bulk wave of 
displacements  is propagating along the 
direction specified by a unit vector m , 
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)].(exp[),( 0 ctikut −⋅= xmAxu          (1) with the principal axis, which is also a longitudinal 
normal. The detailed analysis of numbers of 
longitudinal normals admitted by various symmetry 
systems has been accomplished by Khatkevich [3, 4], 
Brugger [5] and Bestuzheva & Darinskii [6]. 

Here u0 is the scalar amplitude,  is the unit 
polarization vector,  is the length of the wave vector, 

,    is  the  phase speed,   c

A
k

mk k= c k/ω= .  For 
each direction m it is generally possible a propagation 
of three independent isonormal waves with mutually 
orthogonal polarizations Aα (α = 1, 2, 3) and generally 
different phase speeds cα , which are determined from  
the eigenvalue problem (the Christoffel equation) 

   The third type of special directions in crystals – 
acoustic axes md – related to degeneracy of the phase 
speeds of a pair of isonormal waves will be considered 
separately. Here we shall just notice that along md any 
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vector A orthogonal to the polarization A3 of the non-
degenerate wave can be a polarization for the 
degenerate wave propagating with the speed c1 = c2 . 

Pursuing along this line we obtain an algorithm for the 
search for a minimum, c , and 
maximum, .   

)}(min{ 1
min
1 mc=

)}(max{ 3
max
3 mcc = 

   Now let us consider the degeneracy between the 
bottom and middle branches in the direction m , d

)()( 21 dd cc mm = . At the degeneracy point the 
polarization vector  can be expressed in the form  A

Some general theorems on phase-speed branches 
   The determination of the basic wave parameters, the 
polarization vectors  and the phase speeds 

, requires a solution of the eigenvalue problem 
(2), which reduces to a cubic secular equation  

)(mAα

)(mαc
              A ,21 AA βα +=          (12) ,122 =+ βα

                             . (6) 0]det[ 2 =− IQ αρc where  and  are arbitrary orthogonal unit 
vectors in the plane perpendicular to the polarization 
vector . One can prove that 

1A

(3A

2A

)dm
Of course, it would be practically impossible to 
analyze this equation explicitly for arbitrary 
anisotropy. Nevertheless, as we shall see, one can 
extract a series of fundamental general properties of 
the phase speed branches  without explicit 
solving Eqn. (6). Below we shall number the solutions 
of Eqn. (2) so that c  calling the 

 c  and  functions the bottom, middle 
and top branches of the phase speeds, respectively.  

)(mαc

)(2 m c≤ ),()( 31 mm c≤
)(3 mc),(1 mc )(2 m

                                c  (13) ).()( 11 Am cd ≥
With all possible changes in α  and β , the vector , 
(12) describes a unit circle in a plane containing  
and . From this viewpoint, the inequality (13) may 
be expressed in the form of the theorem [9] 

A

1A
2A

The phase speed at a degeneracy point 
between the bottom and middle branches is 
not less than the greatest speed on the 
bottom branch on the great circle of 
directions described by vector  (12) on 
the sphere 

A
12 =m . (14) 

   We start from the invariance properties of the 
combination  on the sphere 2

3
2
2

2
1 ccc ++ 12 =m . Let 

, s  and , be three mutually orthogonal unit vectors. 
As was proved in [7-9], the identity is valid 
n t

At a point of triple degeneracy the vector  is in 
general directed in any arbitrary way. In this case the 
meaning of inequality (13) reduces to the assertion [9] 

A
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Triple degeneracy can be realized only at a 
point where the speed on the bottom branch 
is a maximum and coincides with the 
minimum velocity on the top branch. (15)

irrespective of the orientation of the system { }. tsn ,,
   In the same paper [9] Alshits & Lothe have 
established a series of other useful properties of the 
branches . For instance, for any propagation 
directions m  and n , 

)(mαc Incidentally, this assertion also follows directly from 
theorem (9). 
                                  c  (8) ).()( 31 mn c≤
Energy concentration This means that    In contrast to isotropic bodies, in crystals the energy 
current of the wave is generally not collinear with the 
wave vector . A homogeneous distribution of wave 
normals  on the unit sphere will then often result in 
an orientationally very inhomogeneous distribution of 
the corresponding rays. The relation between these 
distributions is very visual on a slowness surface 
representing a locus of the ends of all slowness 
vectors 

k

/m

m

s )(mc=  outgoing from the same origin. 
Since the wave vector k  may be expressed as k sω= , 
the slowness surface differs from the isofrequency 
surface ,)( const=kω  only by scale. Hence the two 
surfaces possess the same normals. The normal to the 
isofrequency surface is clearly parallel to the group 
velocity , since v 0)()( =⋅=∇= kvkkk ddd ωω  for 
any  belonging to the surface. Thus we can state 
that the normal n  to the slowness surface  at any 
point  is specified by the direction of the group 
velocity v

kd

sα
S

)(m

S
)(m

α αc∇=  of the wave propagating along m.  

The  largest  value  of  the phase speed  in  the 
bottom branch is not greater than the smallest  

   value of the phase speed in the top branch.  (9) 
Theorem (9) leads to strict limitations on the possible 
configurations of sheets of the phase velocity surface. 
In particular, according to this theorem the whole 
inner sheet must be inside of the sphere of the radius 

. )}(min{ 3
min
3 mcc =

   In [9] there were also established the following 
general relations between the phase speeds of waves 
traveling along the directions m and A1,3(m): 
           c ,        . (10) )()( 111 Am c≥ )()( 333 Am cc ≤
In other words, 

The polarization vector  of a wave moving 
along  at speed c  and belonging to 
the bottom / top branch points out another 
propagation direction where the wave speed 

 does not exceed / is not less c .  (11) 

3,1A

)(mm

)3

3,1

( ,13,1 Ac )(3,1 m
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                                                                        More directly group velocity distributions are 
displayed by a ray surface , known also as a group 
velocity surface or a wave surface. This surface is 
constructed from the radius-vector  quite 
analogously to the way the slowness surface  was 
constructed from the s  radius vector. One 
can tell that  maps the unit sphere  to the 
ray surface . It is remarkable that at any point the 
normal  to the  surface must be parallel to the 
corresponding wave normal m .  

R

)(mv
S

)(/ mm c=
)(mv 12 =m

R
Rn R

v

m∆Ω

v∆Ω

m∆Ω cmm= vm ∆Ω∆Ω /

∞=
→

)/(lim
0 vm

m

∆Ω∆Ω
∆Ω

vm ΩddΩA /=

A

     Both surfaces are shown in Fig.1 for the example of 
the cubic crystal Ge. One can see that a major part of 
the phase space is made up of energy concentration 
zones of the type COC’ (Fig. 1a) where the group 
velocity  belongs to rather small solid angles of the 
type BOB’ (Fig.1b) around [100] directions. Thus, the 
energy flux corresponding to the wave packet 
traveling inside some solid angle  might be 
concentrated in a solid angle  much smaller 

. For some directions  the ratio  
 singular may become

          . (16) 

Such directions play a key role in the phonon focusing.  
 The basic quantitative characteristic of energy 
concentrating, originally introduced by Maris [10], 
relates to the left-hand side of Eqn.(16) and is known 
as the enhancement factor 
                              .  (17) 
There are several approaches to the evaluation of the 
factor . In particular, there is the method based on 
the relation between the factor A and the Gaussian 
curvature K of the slowness surface [11-13]: 
                ==− ||)/( 31 KcvA ssc nGn ⋅−2 , (18) 
where G  is the adjoint matrix to the matrix G with 
the components 

                               
ji

ij mm
c
∂∂

∂
=

2

G . (19) 

   Eqn.(18) shows that a vanishing Gaussian curvature 
K  results in an infinite enhancement factor  (17). 
Solutions of the equation  usually form 
closed lines on the slowness surface, known as 
parabolic lines [11, 14]. Parabolic lines are very 
common though not a necessary feature of crystals. As 
was shown by Every [14], for their existence it is 
sufficient for a crystal to have at least one conical 
acoustic axis. Parabolic lines on the slowness surface 

 represent in 

A
01 == −AK

S k -space the image of the locus points 
relating to singularity (16) of the enhancement factor. 
The corresponding image in the r -space is given by 
the so-called caustics on the ray surface R . Naturally, 
caustics display much more complex patterns on R  
than parabolic lines on S.  
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Figure 1: The example of energy concentration for  Ge  
crystal [11]; (a) the outer sheet of the slowness surface;  
(b) the relating sheet of the group velocity surface 

Acoustic axes in crystals 
   As was mentioned above, in isotropic media all 
directions of propagation are degenerate, c1 = c2 = ct. 
In transversely isotropic materials a cone of acoustic 
axes may arise under the condition 
     (20) .0])())()[(( 2

1344443366114466 >+−−−− cccccccc
The angle dθ  of the cone around the principal axis is  

     
2
1

44666611

2
13 44443366111

)  )(  (
) ( )  )( (tan 






 +
= −

c-cc-c
cc- c-cc -c

dθ . (21) 

In any other crystals acoustic axes may arise only as 
separate directions. One can prove [15-17] that 

In crystals of unrestricted anisotropy, 
however not isotropic or transversely 
isotropic, the total number of acoustic axes 
does not exceed 16. (22) 

As was shown by Khatkevich [18], directions md may 
be determined in terms of the components Qij of the 
acoustical tensor. If all non-diagonal components  
                           Qij(md) ≠ 0,     i ≠ j, (23) 
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the corresponding directions md are determined by the 
system 
          (24) ,0)()( 2

23
2

1312231322111 =−−−= QQQQQQQR
           (25) .0)()( 2

23
2

1213231233112 =−−−= QQQQQQQR
 Alshits & Lothe [19] have added to  and  five 
more components and formed the 7-component vector 

. They proved that the equation            

1R 2R

},...,,{ 721 RRR=ξ
                                          (26) 0=ξ
represents an invariant criterion of degeneracy valid in 
an arbitrary coordinate system independently of the 
condition (23). 
   Acoustic axes are very common objects in crystals. 
In fact, until now among practically studied materials 
there are no examples of crystals free of acoustic axes. 
And as a rule, a fastest phase-velocity branch remains 
nondegenerate. The only exclusion found in 1972 by 
Ohmachi et. al. [20] for TeO2 crystals, where all three 
wave branches turn out to be degenerate, has 
prevented attempts to prove that the latter empirical 
observation is a general property of bulk eigenwaves 
in crystals. In the same way, attempts to prove a 
theorem of obligatory existence of acoustic axes in 
crystals of unrestricted anisotropy were stopped after 
Alshits & Lothe [9] in 1979 introduced the example of 
a thermodynamically stable model crystal without 
acoustic axes. According to [9], any orthorhombic 
crystal with the elastic moduli  and 0231312 === ccc
         0  (27) 335521116622 ccCCccc <<<<<<<<
must be completely free of acoustic axes. In (27) C  
constants are defined by the relations 
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cC . A ρβαβ 2)(=S c (119) where  with  and AdcAα /

d

d

×

1,2 being the 
degenerate phase speed and the orthogonal pair of unit 
vectors in the degeneracy plane, Eqn.(12). It turns out 
that the vectors p  and q  determine the geometry of 
the contact of the velocity sheets in the degeneracy 
point m . If the vector product p  does not vanish, 
one has a degeneracy of the conical type. It is 
customary to characterize point singularities in plane 
distributions of vector fields by a topological 
“charge” - a Poincaré index n , which is defined as 
the angle (in 

q

π2  units) of aggregate rotation of 
vectors around a singular point. In these terms the 
topological charge of the conical degeneracy at m  is d

Later an alternative example of orthorhombic medium 
with nondegenerate phase speed branches was also 
found numerically [21, 22].  
   It is worthwhile to mention that properties of a 
crystal without acoustic axes must be rather unusual. 
In particular, in such a medium longitudinal normals 
are obligatory in all three sheets of a phase velocity 
surface, including the “quasi-transversal” sheets. And 
along the latter directions in the “quasi-longitudinal” 
fastest sheet a purely transversal wave must propagate. 
   An example of a model medium free of acoustic 
axes would be impossible for systems of higher 
symmetry than orthorhombic. Any symmetry axis 
higher than 2-fold axis must be an acoustic axis. 
Accordingly, in tetragonal crystals only one acoustic 
axis along a principal 4-fold axis is obligatory, the 
other acoustic axes may exist or may not (altogether 
there could be 1, 5 or 9 acoustic axes in seven 
different combinations). In trigonal crystals there are 
possible only two variants: 4 (obligatory) or 10 
acoustic axes. In cubic crystals 7 obligatory acoustic 
axes along 4- and 3-fold symmetry axes always exist 

and no other degeneracies may occur in this symmetry 
system. The more detailed analysis of acoustic axes in 
crystals of particular symmetry systems one can find 
in [3, 4, 15, 17, 22, 23]. 
   Though orientations of acoustic axes are determined 
by the same equation (26) and the basic characteristics 
of the eigenwaves propagating along m  are 
universal, degeneracy directions differ from each 
other by their neighborhood. They can be classified by 
geometrical types of contact along m  of degenerate 
velocity sheets or / and by types of singularities of 
vector polarization fields  around .  

d

d

d

)(, mA βα m
   Geometrically one should distinguish conical and 
tangent points of contact and lines of intersection of 
degeneracy sheets (the latter for transverse isotropy, 
see Eqn.(21)). For model crystals there are known also 
the so-called wedge-point contacts and lines of 
tangency. Alshits & Lothe [19, 24] (see also [25, 26]) 
first noticed that geometrical features of degeneracies 
correlate with definite types of polarization 
singularities. This observation was elaborated in [27] 
where a complete classification of acoustic axes was 
constructed including all possible types of local 
geometry of the velocity sheets near the degeneracy, 
and the corresponding polarization singularities. The 
developed theory also provides algebraic conditions 
for any type of degeneracy, without solving the wave 
equation for arbitrary anisotropy, but using only 
appropriate convolutions of the tensor c .  ijkl

   As an example, let us construct the two vectors 
          ,)( 2211 dmSSp −=       q  (28) ,)( 2112 dmSS +=

                          )].(sgn[2
1 qpm ×= dn  (29) 

If 0=×qp  but  or q  does not vanish, we arrive at 
a wedge degeneracy at the point m  or along the line 
passing through m . The case  corresponds 
to a degeneracy of the tangent type at a point or along 
a line. In order to distinguish the degeneracy at a point 
from that along a line and in order to calculate the 
Poincaré index for a wedge-point degeneracy 

p
d

= qd 0=p
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( 2
1,0 ±=n
1,0 ±=n

ijkl

) or for a tangent-point degeneracy 
( ), one should use other convolutions of the 
tensor c  with the vectors m  and , see [27, 28]. d αA

2
1±=

=n
n

∞

n

1=

vivv δ−→

   Almost all types of acoustic axes exist in real 
crystals. Conical degeneracies ( n ) exist in all 
known crystals of orthorhombic, monoclinic and 
triclinic symmetry systems. Along a 3-fold axis both 
in trigonal and in cubic crystals the conical 
degeneracy with the Poincaré index 2

1−=

12 c+

44

n  always 
occurs. A 4-fold axis in tetragonal and cubic crystals 
is always a tangent acoustic axes with the Poincaré 
index . For the cubic system the choice of the 
sign of  is especially simple: n . An 

-fold axis in transverse isotropic crystals is also 
always a tangent acoustic axis, however its 
topological charge is definite: . In crystals of this 
symmetry one can also meet the wedge-line 
degeneracy, Eqns.(20), (21). In the model crystal, 
where apart from (20) also the condition c

1±
)44

c

sgn(c=

1=

66=  is 
satisfied, the two symmetrical wedge lines in 
accordance with (21) must coalesce into one tangent 
degeneracy line in the basal plane ( 2/πθ =d ). 
   Different types of acoustic axes manifest a different 
behavior (disappearance, shifting, splitting) under 
small perturbations of the elastic properties. The 
analysis of this problem in [19, 27] reveals that only 
acoustic axes of the conical type are always stable 
under perturbations, i.e. they can only shift. Unstable 
points of degeneracy either split in accordance with 
the rule of conservation of topological charge or 
vanish but only if . For instance, at a phase 
transition from a transverse isotropic to a trigonal 
crystal the ∞-fold axis ( n ) is replaced by the 3-
fold axis (

0=n

2
1−=n ). In accordance with the rule of 

index conservation and with symmetry requrements in 
addition to the latter degeneracy there must arise also 
three conical acoustic axes of the index 2

1=n  (Fig.2).  
   As was mentioned in [27] and studied in [29], even 
a conical degeneracy is unstable with respect to the 
“switching on” a small damping, which is equivalent 
to a small imaginary perturbation of the phase speed, 

. As a result of such perturbation, the 
conical axis split into a pair of singular directions 
connected on the slowness surface and on the surface 
of damping by lines of intersection of corresponding 
sheets. The only two common inversely nonequivalent 
points of these lines on the unit sphere 12 =m  
correspond to new positions of acoustic axes. The 
polarizations of degenerate waves along the two new 
singular directions are circular. In the vicinity of these 
points of degeneracy, polarizations are elliptic. The 
rotation of large semi-axes of these ellipses around 

each of degeneracy points corresponds to the Poincaré 
index 4

1±=n , which fits the index conservation rule.  

n
m

   The extension of the theory [27] to piezoelectrics 
was given in [30, 31]. It was found that the 
classification of acoustic axes does not change apart 
from renormalization of explicit forms of the algebraic 
conditions for particular types of degeneracies, due to 
contributions from piezoelectric moduli. However this 
contribution may qualitatively change the wave 
properties near a specific acoustic axis and even 
change the type of the degeneracy itself, see [31, 32]. 
Piezoelectric coupling also causes the quasi-static 
electric field accompanying the elastic waves. Its 
characteristics depend on the polarization of the 
elastic wave and therefore also have definite 
singularities near the directions m  [30].  d

 
 
 
 
    
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 n = 1/2 

n = 1/2  n = 1/2

 n = -1/2 

Figure 2: Splitting of the tangent degeneracy along the 
∞-fold axis into the four conical degeneracies at the 
phase transition from the hexagonal to the trigonal 
symmetry system 

 n = 1 

Surface, leaky, exceptional and quasi-bulk waves 
Stroh sextic formalism 
   Consider a half-infinite medium of unrestricted 
anisotropy. Let us choose the coordinate system with 
the origin at the surface, the -axis along the internal 
normal  to the surface and the x-axis along the 
direction  of wave propagation. The plane specified 
by the unit vectors m and  is known as a sagittal 
plane. In this coordinate system the steady-state 
displacement field of the plane wave can be presented 
as a superposition of partial waves, 

y

n

   ])(exp[),( ∑ −+=−
α

ααα vtypxikbyvtx Au , (30) 

which have equal x -components of the wave vector, 
kkx ≡ , and a common tracing speed kv /ω= , but 
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different y-components of the wave vector, k , 
and polarization vectors . Stroh [33] proposed, in 
parallel with (30), to consider the traction field, 

kpy α
α =)(

)]vt

αA

αL

Nξ

pα

v̂

>αp

αp

α

vv ˆ>

0=nσ
,011Lb

0}=iLα

R

}iα

    n , (31) ∑ −+−=−
α

αα (exp[),( ypxikbikyvtxσ

and proved that the 6-vectors ξ = ( , L )α

α

αA

.αξ

α
T and the 

parameters  are eigenvectors and eigenvalues of 
some real 6×6 matrix N : 

αp

αp=  This equation 
leads to a secular equation with real coefficients, 
determining six functions , which must be real 
or form complex conjugate pairs. Here and below, 
excluding transsonic states, we suppose all  to be 
non-degenerate. The first transsonic state takes place 
at the so-called limiting velocity , which is defined 
as the lowest tracing speed admitting a bulk mode in 
(30). The range 0  is called a subsonic range. 
Here all eigenvalues  and eigenvectors  occur in 
pairs of complex conjugates. At  one of the 
conjugate pairs coalesces into one degenerate 
eigenvalue , which in the supersonic range  
splits into a pair of real parameters. On the other hand, 
in the range v  three of six inhomogeneous terms 
of superposition (30) contain infinitely increasing 
exponents at  and the corresponding three 
amplitudes  must vanish. With the choice of 
numeration providing Im  for 

)(v

0

v̂

v<

v̂

∞→

<

αp ξ
vv ˆ=

p̂

αb

<

y

α  = 1, 2, 3, there 
should be . As a result, the solution (30)-(31) 
describes a 3-partial field localized at the surface, i.e. 
a surface wave. Its amplitudes  are supposed to be 
found from the boundary conditions. For a free 
surface the requirement of vanishing traction 

06,5,4 =b

αb

 
reduces to the equation 3 =3+22+ L

det{
L bb  which 

may have non-trivial solutions only if . 
This equation determining the velocity v  of the 
Rayleigh wave is complex. For this reason J.L. Synge 
(1956) supposed that this boundary problem is over-
determined and the forbidden directions for surface 
wave propagation in anisotropic bodies were likely to 
be the rule rather than the exception (see [34]). 
However, Stroh [33] has proved that det{  has a 
structure , where f(v) is a real function. 
Thus the dispersion equation is real and surface waves 
in anisotropic media are not forbidden. 

L
)() vf( ib+a

 
Existence considerations  
   Of course, the reality of the equation f(v) = 0 does 
not guarantee an existence of its solutions. In 1973 
Barnett et al. [35] proved the uniqueness theorem of a 
solution for a surface wave, when it exists in the 
region . Later Barnett & Lothe [36-38] and 
Chadwick & Smith [39] proved also the existence 

theorem for subsonic surface waves, gradually 
sharpening its formulation on the basis of establishing 
new and new mathematical properties of different 
quantities involved into the theory.  

vv ˆ<

   Before presenting the final formulation of this 
theorem let us return to the concept of a first transonic 
state vv ˆ= , which plays a key role in the existence 
conditions. Usually at v  there is only one point of 
tangency between the vertical line and the outer sheet 
of the slowness surface. Such configuration is called  
Type 1 transonic state. The corresponding bulk 
limiting wave would propagate with the group 
velocity parallel to the surface, however this might 
happen only in the exceptional situation when this 
wave satisfies the condition of a free surface. Such 
waves, known as exceptional bulk waves [39], occupy 
only 1-dimensional sub-space (lines) in the 3D space 
of all possible surface wave geometries [26], i.e. 
orientations of the frame { . The other five types 
of transonic state arise [39] when the vertical line 

 is tangent simultaneously with more than 
one sheet of the slowness surface at the same point or 
at different points of the same sheet. 

v̂=

m },n

1ˆ−v1− =v

   So, the existence theorem may be stated in the form: 
The existence of a surface wave at a free 
surface of an elastic half-space is guaranteed 
in the subsonic range  if the first 
transonic state is not of Type 1, or if it is of 
Type 1 but the corresponding limiting wave is  

vv ˆ<

not exceptional. (32) 
If the first transonic state is of Type 1 and the limiting 
wave at v v̂=  is exceptional, then a surface wave 
solution in the range vv ˆ≤  may exist or may not. Also 
the non-existence theorem is valid [36-38]: 

A clamped surface cannot support a free  
localized wave in the elastic half-space. (33) 

   Of course, the conditions of a free or clamped 
surface do not represent a complete list of physically 
possible boundary problems for surfaces waves. The 
alternative problem of a loaded boundary, σ , 
has been considered by Alshits et al. [40] for a scalar 
or tensor coefficient . It was found that, depending 
on the parameters of the loading system, the boundary 
problem may admit several solutions or none.  

un λ̂−=

λ̂

   The Stroh approach was later extended [41-43] so 
that it could be applied to piezoelectric crystals. This 
has led to an 8-dimensional formalism, which allowed 
extending theorems (32), (33). The non-existence 
theorem for a clamped surface remains valid also for a 
piezoelectric medium. However, a uniqueness 
property generally does not retain. In piezoelectrics 
there are possible two surface waves solutions (e.g. of 
Rayleigh or Bleustein-Gulyaev type). But only one of 
them is guaranteed for a free metallized surface, when 
the limiting wave is not exceptional. Otherwise, two, 
one or none solutions may occur in this case.  
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