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Abstract

We present here experimentally obtained band-gap
characteristics of a sonic-crystal slab composed of a
two-dimensional square-array of aluminum rods in air,
which is constructed between a pair of parallel metallic
sheets with a spacing smaller than the wavelength. We
observed a full band-gap, that is a band-gap common
to the [100] and [110] directions of plane-wave prop-
agation, between 14.1 kHz and 18.7 kHz, in the nor-
malized frequency between 0.49 and 0.65, with a trans-
mission ratio smaller than —30 dB using a tone-burst
technique. These results agree well with the numerical
ones. The realization of a full band-gap in the sonic-
crystal slabs indicates a further development to various
shapes of sonic wave-guides and sonic circuit including
directional couplers, ring resonators, filters and split-
ters.

Introduction

Wave propagation in the periodic structures has been
reviewed for photonic crystals by Yablonovitch[1] in
1993, and the concept of full band-gap was introduced,
where a plane wave can not propagate in the photonic
crystal in any direction. The theoretical possibility of
sharp bend of the waveguide on a wavelength scale, dis-
cussed by Mekis et al.[2] in 1996, stimulated the prac-
tical research on photonic crystals.

Following the theoretical discussions for elastic
waves by Economou and Sigalas[3] and Kushwaha et
al.[4], Montero de Espinosa et al.[5] presented the first
observation of an ultrasonic full band-gap in a two-
dimensional composite of a mercury alloy cylinder ar-
ray embedded in aluminum. For sound waves, Sanchez-
Pérez et al.[6] showed an insufficient band-gap of a
two-dimensional array of rigid cylinders in air.

We reported the correspondence relationships
between two-dimensional sonic crystals and pho-
tonic crystals, and obtained full band-gaps of two-
dimensional sonic crystals made of rigid rods in air[7],
developing the FDTD method for the numerical sim-
ulation of sound waves in the sonic crystals. In order
to realize a two-dimensional wave propagation in the
three-dimensional real world, we constructed a sonic
crystal made of an array of long acrylic-resin rods in
air, and observed experimentally a full band-gap[10].

An alternative promising realization of a two-
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dimensional sonic crystal is reported in this presenta-
tion. Namely an array of short aluminum rods was
constructed between a pair of parallel metallic sheets
in air. The longitudinal modes of the sound waves in
the wave-guide slab, whose wave fronts are perpendic-
ular to the slab surfaces, were injected by a tweeter,
a high-frequency acoustic transducer of a long plane
membrane. We observed a relatively wide “full band-
gap” of a transmission ratio smaller than —30 dB using
a tone-burst technique. The results agree well with the
numerical ones obtained by FDTD method.

The realization of a full band-gap in sonic-crystal
slabs indicates a further development to various shapes
of sonic wave-guides and sonic circuits including direc-
tional or filtered couplers, ring resonators and splitters.

Two-dimensional sonic-crystal bulk

First we describe the fundamentals of sonic-crystal
bulk, and show the measured band-gap structures of a
two-dimensional sonic-crystal bulk.

Characteristics of sonic crystal

A type of two-dimensional sonic crystals in the three-
dimensional space has a uniform structure along an axis
long compared with a wave-length, as shown in Fig. 1.
If a plane wave cannot propagate in the crystal along

(a) Direction [100]
Figure 1: Sonic-crystal.
incident and reflected plane waves.

(b) Direction [110]
Red arrows show the

any symmetrical axes, [100] and [110] for the square
lattice, any two-dimensional wave cannot enter into the
crystal. Such a frequency range is called “full (or com-
plete) band-gap.” These characteristics are determined
first by geometrical parameters, namely the ratio of the
sonic wavelength X to the lattice constant a, and the
ratio of the radius r of a scattering rod to the lattice
constant, in other measure, the filling fraction 7r2/a?;
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second by the material parameters, namely K the bulk
modulus of the scatterers normalized with that of the
host, and p the density of the host normalized with that
of the scatterers[7].

Construction of a two-dimensional sonic-crystal bulk
and full band-gap measurement

Based on the numerical simulations of the sound
wave propagations in a periodic structure of acrylic-
resin rods in air[10], we constructed a sonic-crystal bulk
shown in Fig. 2. The lattice constant is 24.0 mm, and

Figure 2: Sonic-crystal bulk of acrylic-resin
rods in air.

the radius of the scattering rods is 10.2 mm. The num-
ber of the scatterers is only 10x11.

Using burst sound waves of a temporal duration of
8ms, and gating the steady-state part of the transmit-
ted sound waves, and further using a curve-fitting tech-
nique, a wide-range dynamic measurement of the trans-
mission ratio of the sonic crystal was achieved. As
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Figure 3: Measured transmission ratio of the
sonic-crystal bulk of acrylic resin rods in air.

shown in Fig. 3, a full band-gap was obtained clearly
between 7.0 kHz ~ 9.5 kHz, and in the normalized fre-
quency a/A, between 0.48 and 0.66 with the transmis-
sion ratio smaller than —30dB.
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Constraint of two-dimensional wave propagation

This type of sonic crystals are only for two-
dimensional sound waves whose wave-fronts are uni-
form in the direction parallel with scattering rods. The
sound waves from a speaker of a finite radius have
diffracted and curved components of the wave-front. In
order to eliminate the diffracted waves from the detec-
tion, we have placed a sufficient mount of glass wool at
both ends of the scattering rods as shown in Fig. 4.
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Figure 4. Measurement of the transmission ratio of
sonic crystal.

sonic-crystal dab

Alternatively a two-dimensional wave propagation is
expected to be achieved by the mode selection prop-
erties of a thin wave-guide slab. We describe a con-
struction of a two-dimensional sonic-crystal slab and
the measured band-gap characteristics.

Sructure of a sonic-crystal slab

First we prepare a sonic wave-guide slab in air made
of a pair of parallel rigid plates, whose spacing should
be smaller than a wavelength. A periodic array of scat-
terers are constructed in the wave-guide slab, as illus-
trated in Fig. 5. The guided modes of the wave-guide
slab whose wave-fronts are parallel to the scatterers will
behave as two-dimensional sound waves, and will have
a theoretically expected band-gap characteristics.

(a) Direction [100]
Figure 5: Sonic-crystal slab.

(b) Direction [110]
Red arrows illustrate
the reflected plane waves.

Construction of a sonic-crystal slab
We have constructed two sonic-crystal slabs to mea-
sure the fundamental transmission characteristics, one



for a [100]-direction plane wave as shown in Fig. 6(a),
and the other for a [110]-direction plane wave as shown
in Fig. 6(b). The materials are all aluminum metal.
Both wave-guide slabs have a spacing of 15mm. The
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Figure 6:  Sonic-crystal slabs of aluminum rods.

lattice constant is 12.0 mm, and the radius of the scat-
tering rods is 5.0 mm. The number of the scatterers is
1612 for [100]-direction, and the equivalent number
of scatterers are aligned for [110]-direction.

Band-gap measurement

Applying a burst wave like in the case of the two-
dimensional sonic-crystal bulk, and gating the steady-
state response of the transmitted sound waves, and fi-
nally using a curve-fitting technique, a wide-range dy-
namic measurement was achieved. The magnitude of
the sound-wave transmitted through the sonic-crystal
slab was normalized by that transmitted through the
sonic wave-guide slab without any scatterer. Figure
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Figure 7:  Measured transmission ratio of the
sonic-crystal slab.

7 is a preliminary result of the transmission charac-
teristics, and shows a full band-gap between 14.1 kHz
~ 18.7kHz, and in the normalized frequency between
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0.49 and 0.65 with the transmission ratio smaller than
—30dB. The scaling property of the photonic crystal[8]
is fulfilled also in the full band-gap between this sonic-
crystal slab and the sonic-crystal bulk shown in Fig. 3.

Flexible sonic wave-guidesin the sonic-crystal slab
Sonic wave-guides are most interesting applica-
tion of the full band-gap properties of sonic crys-
tal[7][11][12]. To remove any scatterer or replace it
with a scatterer of different size, we have invented
a flexible structure of sonic-crystal slab as shown in
Fig. 8. The structure is already adopted for the sonic-
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Figure 8: A structure of sonic-crystal slab flexible for
sonic circuits.

crystal slabs shown in Fig. 6. A thin aluminum rod of a
radius of 3.0 mm is placed at every lattice point. An ac-
tual scatterer is made by an aluminum collar through the
rod. The thin rod alone does not practically effect the
sound wave propagation in the wave-guide, and it may
be removed there. An example of coupled wave-guides
is shown in Fig. 8. Coupling ratio is controlled by the
radius of the collars between the wave-guides. Sharp
bends of the wave-guides in half-wavelength scale are
allowed for the sound waves in the full band-gap of the
sonic-crystal slab.

Concluding Remarks

We have reported a new idea of sonic-crystal slab
which is an experimental realization of the theoreti-
cal two-dimensional sonic crystal, and obtained a full
band-gap in the theoretically expected frequency range.
Based on the theoretical and experimental results, we
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have invented a structure of flexible functional inte-
grated acoustic circuit composed of coupled wave-
guides, wave splitters, filters and ring resonators, in-
cluding sharp bends of the wave-guides.
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