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Abstract 
   In the present communication the complementary 
elastic and inelastic effects in acoustic wave-crack 
interactions are discussed from a unified point of 
view. Experimental results obtained for samples 
containing individual cracks are presented. The data 
provide instructive examples of the important role of 
crack-induced variations in the sample elasticity as 
well as in elastic -wave dissipation, both of them being 
pronouncedly sensitive even to low acoustic strains 
( 56 10..10 −−≤ε ). Difficulties in conventionally used 
interpretations of such observations are pointed out. It 
is argued that just a few rather general geometrical 
crack features do essentially determine the character 
of these phenomena including both “instantaneous” 
and slow dynamics effects. In particular, a thermo-
elastic mechanism allowing for a unified and 
consistent interpretation of the observed variety of the 
effects is considered. Possible diagnostic applications 
of the microstructure-induced nonlinear effects are 
pointed out.  
 
Introduction: main experimental facts and 
conventional interpretations. 
   There is general consensus that cracks do 
significantly affect acoustic properties of solids, 
especially their nonlinearity. In this aspect, one may 
mention the following important distinctions of crack 
containing materials from perfect crystals and 
homogeneous amorphous solids:  

- Highly-increased level of elastic nonlinearity 
- « Non-classical » character of the nonlinearity 
(non-monotonous amplitude dependences, 
fractional powers, etc.) 
- Increased dissipation for elastic waves.  
- Pronounced pressure-dependence of the 
dissipation. 
- Slow dynamics effects (memory of the precedent 
acoustic activation, log-time behavior…)  

   When the density of the cracks is significant the 
linear elastic  moduli of the material can be affected 
(reduced) quite noticeably, however, at small crack 
density the aforementioned nonlinear elastic and 
dissipative manifestations can be very pronounced, 
whereas the complementary variations in the linear 
elastic moduli still remain hardly noticeable. In 
general it is quite clear that all of the mentioned 
manifestations are more or less directly related to high 
compliance of the crack-like defects. However, 

conventional interpretations often leave open essential 
problems which are briefly outlined below.  
 
Elasticity: high compliance of cracks and their 
sensitivity to very low strains.  
   One often argues that, for the elastic stress, cracks 
may be considered as nonlinear “diode-type” 
inclusions in the near-perfectly linear elastic matrix. 
Indeed, under tensile stress, crack interfaces can be 
relatively easily separated. In contrast, under 
compressing stress the crack closes, so that the 
material response to the compression is practically the 
same as for an intact solid. Such a representation, 
although sometimes useful, is rather over-simplified. 
In particular, an open question remains how average 
elastic strains as low as 10-6 and even less may 
noticeably affect the material properties, which 
implies essential change in the state of the cracks. 
Various crack models consistently yield the “rule of 
thumb”[1] according to which a crack may be 
completely closed by an average strain roughly equal 
to crack’s aspect ratio d/L, where d and L  are 
characteristic  crack opening and diameter, 
respectively. Typical aspect ratios for cracks (e.g. in 
rocks) are 10-3 -10-4. In the pressure-dependence of the 
elastic wave velocities in rocks this fact results in 
initially pronounced increase of the wave velocities 
under increasing static pressure, which indicates 
gradual closure of the cracks. Then, at average static 
strain in the material ~ 10-3, the rate of the velocity 
variation strongly decreases. At such strains the elastic 
moduli practically reach saturated values indicating 
that most of the cracks are already closed (see e.g. 
[2]). Application of a relatively intensive oscillating 
strains also causes period-averaged variation in the 
material elasticity, which may be conveniently 
monitored via observation of shift of the resonance 
frequency for another small-amplitude probe wave 
(see e.g. [3], where the data are reported for a 
sandstone very similar to samples discussed in [2]). 
Importantly that quite a noticeable variation in the 
elastic moduli is observed in such experiments for low 
strains 56 10..10~ −−ε . From the point of view of such 
conventional models as elliptical cracks or penny-like 
cuts this should be attributed to closure of cracks with 
aspect ratios 610~ − . However, for typical crack sizes 
of millimeter- and submillimeter-scale , such small 
aspect ratios imply essentially sub-atomic separation 
of crack interfaces, whereas the minimal separation is 
physically limited to the atomic scale. This apparent 
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paradox indicates that the aforementioned popular 
crack models are not sufficient in this case. 
 
Dissipation: adhesional/frictional hysteresis and 
“sub-atomic friction”.  
   Concerning the problem of dissipation in crack-
containing solids, models assuming the dominant role 
of frictional/adhesional hysteresis at crack interfaces 
have been developed over 40 years, especially in 
application to geophysics (see, for example [4,5]). 
Such models had evident positive features since they 
yielded reasonable estimates of the dissipation in 
rocks using friction coefficients typical for 
macroscopic experiments and assuming verisimilar 
crack densities. Furthermore, the frictional mechanism 
suggested a way to account for nearly-constant Q-
factor typical for many rocks in a wide frequency 
band. Amplitude-dependent attenuation could be also 
incorporated in such models. However, in the 
framework of such models the problem of explanation 
of low-amplitude attenuation remains open. The 
following instructive citation from [4] indicates that 
this difficulty was understood quite long ago: “…For 
the range of strains used in our experiments an upper 
limit of interface displacement ranges from 1210−  cm 
in the low strain amplitude experiments… The 
displacements are so small that the friction 
characteristics of the interfaces should be quite 
different from what would be observed in a 
macroscopic friction experiment…”. Recent data of 
nano-tribology based on AFM-technique have directly 
demonstrated that frictional slip is essentially 
threshold-type phenomenon and inherently implies 
minimal atomic-scale displacements at the contact 
interface (see e.g. [6]). Nevertheless, often the 
estimates based of the assumption of 
frictional/adhesional dissipation still are applied to 
small-amplitude range with far subatomic 
displacements at the crack interfaces. However, 
comparable magnitudes of Q-factor for small and 
higher-amplitude waves indicate existence of some 
other, threshold-less dissipation mechanism. 
 
Thermoelatic threshold-less mechanism of 
dissipation: its advantages and drawbacks. 
   In parallel to mechanisms based on 
frictional/adhesional hysteretic losses a threshold-less 
thermoelastic mechanism of dissipation in imperfect 
solids was proposed by Savage quite long ago [7]. 
Since for homogeneous solids thermoelastic losses are 
very low, by analogy, they are often neglected for 
imperfect materials as well. However, presence of 
cracks introduces an additional scale into the 
distribution of temperature variations in the elastic 
wave field, which may be essentially smaller than the 
elastic wave length. Thus the temperature gradients 
could be strongly increased, which results in strong 

increase of the thermoelastic attenuation. The 
frequency dependence of the dissipated amount of 
energy at a crack exhibits a relaxation character with a 
maximum occurring when temperature wave length is 
comparable with the crack diameter. Savage [7] has 
shown that reasonable amount of cracks may account 
for observed dissipation in seismic frequency range. 
Assuming a wide distribution of cracks over their size, 
a nearly constant Q-factor could be predicted for a 
rather wide band of seismic frequencies. However, 
since the amount of energy dissipated by a crack 
decreases rapidly with the crack size decrease (by a 
cubic law for the relaxation maximum), in order to 
expand the nearly constant Q up to kHz and ultrasonic 
frequency range, existence of very high (apparently 
unrealistic) densities of tiny micrometer-scale cracks 
should be assumed. Besides, amplitude-dependent 
dissipation, which is quite pronounced for the strain-
range 610~ −ε , could not be readily incorporated in 
this mechanism since it seems quite improbable  that 
such low strains may strongly affect the crack density.  
…Below a possible way to resolve the formulated 
difficulties is outlined. The approach comprises not 
only the aforementioned “instantaneous” response of 
crack-containing solids, but the so-called slow-
dynamics effects recently found for crack containing 
solids subjected to acoustic activation.  
 
Main structural features of crack-like defects and 
their physical consequences.   

   For the further discussion it is essential to remind 
that cracks can be considered as planar objects with 
characteristic diameter L and opening d, their aspect 
ratio being normally very small, 1/ <<Ld . In order to 
completely close a crack, it is enough to produce in 
the material an average strain roughly equal to the 
crack’s aspect ratio, and this statement does not 
depend strongly on a particular crack model [1]. 
Usually this strain is rather small, 43 10..10~/ −−Ld , 
but nevertheless significantly larger than typical 
acoustic strains, 65 10..10~ −−ε , for which the 
aforementioned pronounced nonlinear elastic and 
dissipative effects were observed.  
   Further important statement is based on numerous 
direct images of crack-like defects in rocks and 
damaged solids, obtained by the methods of electron-, 
acoustic -, and atomic force microscopy, which 
indicate rather complex, wavy or zigzag interface 
shapes even for micrometer-scale cracks. These wavy 
interfaces are normally separated not only in the 
normal direction, but are laterally shifted, so that 
interface contacts are produced. Due to the wavy 
character of the contacting surfaces the cracks often 
have elongated (strip-like) inner contacts, rather than 
point like ones, as schematically shown in Fig.1 [8].  
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Fig. 1. A crack without and with an inner contact is 

shown here schematically. At lL →~
 a strip-like contact 

reduces to a point-like contact. 

   Importantly that at these regions, local separation 

(or inter-penetration) d
~

 of crack interfaces is much 
smaller than average separation d . Such contacts are 
especially stress-sensitive. Indeed, due to the 
described geometry they are strongly perturbed by the 
average strain, which can be orders of magnitude 
smaller (roughly 1

~
/ >>dd  times) than the typical 

magnitude 43 10..10~/~ −−Ldε  required to close the 
whole crack, in particular average strains 

65 1010~ −− −ε  can readily open or close such a 
contact. Another crucial point consists in the fact that 
defects of a material structure are regions of very 
effective energy dissipation even for elastic waves 
whose length is much greater than the crack size L . 
As mentioned above, this dissipation is usually 
attributed to friction or adhesion hysteresis at crack 
interfaces. However, in order to activate the 
adhesional/frictional losses, mutual displacement at 
interfaces should exceed the atomic size a . In this 
context, for a crack with diameter L , the average 
compressional or shear strain ε  can produce maximal 
lateral or normal interfacial displacement Lε~∆  [8-
10]. This estimate does not depend on the details of 
the crack model and agrees with the above statement 
that compressional strain Ld /~ε  produces d≈∆ , 
thus closing the crack completely. On the other hand, 
the requirement a>∆  determines the threshold strain 

Lath />ε , below which the interfacial displacement is 
of sub-atomic scale. For a typical atomic size 

10103~ −⋅a  m and a macroscopic crack with 310~ −L  
m, this yields 6103.0~ −⋅thε , which should be 
exceeded in order to activate frictional and adhesional 
hysteretic losses. However, even at much smaller 
strains, the defects can efficiently dissipate elastic 
energy due to locally enhanced thermoelastic 
coupling. Indeed, near inhomogeneities, unlike the 
case of a homogeneous material, wave-induced 
temperature gradients are determined [11] not by the 
elastic wave length, but by the much smaller defect 
size L  and the temperature wavelength δ . When 

scales L  and δ  coincide, the “global” (that is over 
the whole crack as considered by Savage [7]) losses 
per cycle reach their maximum, which is rigorously 
analyzed in [7] using the elliptical crack model. 
Alternatively, without specifying the crack model in 
detail, in order to estimate temperature gradients and 
the respective losses in the crack vicinity, one may use 
the approximate approach known for polycrystals 
[11]. In doing so simplified asymptotic expressions 
can be derived for the losses per cycle in the low-
frequency limit (when δ<<L ), the high-frequency 
limit ( δ>>L ) and at the relaxation maximum (when 

δ~L ). With an accuracy of a factor of 2-3 these 
expressions are [8]: 

2522 )/(2 εκαπω LKTW dis
LF = ,                                       (1) 

222/12 )]/([)/(2 εωρκραπ LCCKTW dis
HF = ,                  (2) 

2322max )/(2 εραπ LCKTWcrack = , )/( 2CLL ρκωω ≈= ,    (3) 

where ω  is the wave cyclic frequency, T  is the 
temperature, α  is the temperature expansion 
coefficient of the solid, K  is the bulk elastic modulus; 
ρ  is the density; C  is the specific heat, ε  is the 
average strain, κ  is the thermal conductivity, and Lω  
is the relaxation frequency for defect scale L . For 
example, for 310~ −L m the relaxation frequency Lω  

falls between cycle/s  1-10 1−  for most rocks and 
metals. In the calculation of the low-frequency losses 
by analogy with [11] we took into account that crack 
size L  is the characteristic  scale of the transition from 
zero stress at the free interfaces to the applied average 
stress σ . The derivation of the high-frequency 
expression took into account that different particular 
crack models consistently predict that at average 
applied stress σ , the near-tip stress concentration has 
a universal form Lrtip //~ σσ  [12] (distance r  is 
counted from the tip), and it is just this region which 
gives the main contribution to the high-frequency 
dissipation. The validity of the approximate 
expressions obtained is supported by the good 
agreement with rigorous analysis [7]. 
   Analogous estimates for the dissipation at the inner 
contact of the crack take into account that the external 
applied stress is distributed between the arc crack-
stiffness and the contact stiffness. The scale of the 
localization in the depth direction of the near-contact 
stress is roughly equal to the contact width Ll <<  
[13]. At contacts that are soft (compared to the arc 
crack stiffness) the corresponding magnitude of the 
near-contact stress, cσ , is readily shown to be 

)/(~ lLc σσ . These stress-distribution features, which 
do not depend on details of the crack and contact 
models, suffice for the estimations of the respective 
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thermoelastic losses, which are similar to Eqs. (1)-(3), 
although the high frequency asymptotic dependence 
of the dissipation for contacts is 1−ω  instead of 2/1−ω  
for cracks: 

22222 ~
)/(2 εκαπω LLlKTW dis

LF = ,                                 (4) 

222 )/(
~

)/()/2( ερακωπ lLLCKTW dis
HF = ,                      (5) 

2222max ~
)/(2 εραπ LLCKTWcont = , )/( 2Cll ρκωω ≈=     (6) 

   Comparison of Eqs. (3) and (6) indicates the striking 
result that, for strip-like contacts with LL ~~ , the 
maximum losses at the whole crack and at the small 
inner contact have the same magnitude, whereas the 
relaxation frequency for narrow, Ll << , contacts can 
be 4-6 orders of magnitude higher and reaches the 
kHz or even the MHz band.  
 
Consequences for the small-amplitude dissipation.  
   The obtained results indicate that the widely 
accepted opinion as to the low importance of 
thermoelastic coupling for seismic wave attenuation 
requires essential revision. Indeed, Eqs.(1)-(6) 
demonstrate that even a single crack with a few soft 
inner contacts can contribute to a weakly frequency 
dependent quality-factor in a very wide frequency 
range. Comparison of Eqs. (3) and (6) indicates that 
even a single inner contact of width l  in a larger crack 
of size L  produces the same dissipation at higher 
frequencies as a huge number (thousands and 
millions) of tiny cracks of size l . For example, for a 
reasonable ratio 210~/ lL , even a point-like single 
contact with lL ~~  is equivalent to 42 10~)/( lL  
cracks, and a strip-like contact with LL ~~  can 
dissipate the same energy as 63 10~)/( lL  small 
cracks. If, for example, a mm-scale crack contains 
several strip-like inner contacts, then according to 
Eqs.(1)-(6) such a crack may exhibit several 
overlapping relaxation maxima of comparable 
magnitude in the range from Hz- to ultrasonic 
frequencies. Further, taking into account crack and 
contact distribution over their size and realistic  crack 
densities one may readily obtain in the conventional 
way [7] reasonable estimates of the magnitude of the 
resultant near-constant Q-factor. Such estimates 
indicate that, in contrast to widely accepted opinion 
based only on the “global” mechanism of the 
thermoelastic losses, they are not negligible at all 
from seismic  to ultrasonic frequencies and in the low-
strain amplitude range ( 97 1010 −− −≤ε ) instead may 
strongly dominate. 
 
Possibility of nonlinear effects at low strains.  
…Another essential inference comes from the fact 
that quite moderate average strain, say 65 1010~ −− −ε , 
which is too small to perturb the crack as a whole, can 

strongly perturb sizes l  and L~  of soft inner contacts. 
According to Eqs. (4)-(6) this may have a pronounced 
effect on the dissipation of a weaker probe wave, 
though neither adhesion-hysteresic, nor frictional 
losses are important for such a weak wave. In 
contrast, the complementary variation in material 
elastic moduli may remain very small, since the 
stiffness of such contacts is very low. In particular in 
crack-containing solids, favorable conditions should 
occur for the direct elastic -wave analogue of the so-
called Luxemburg-Gorky (LG) effect, which 
represents one of the pioneering observations in 
nonlinear wave interactions [14]. It consists of the 
transfer of the modulation from the radiation of a 
powerful radio-station (originally, Luxemburg and 
Gorky-city stations) to another carrier wave. This 
cross-modulation is caused by variations in the 
absorption of the ionosphere plasma, which are 
induced by the amplitude-modulated stronger wave at 
frequencies on the same scale as the modulation 
frequency. The stronger wave thus produces 
pronounced amplitude-modulation of the weaker 
wave, whereas the role the complementary 
perturbations in the weaker wave velocity is of 
secondary importance for the considered phenomenon 
[15]. 
   Below experimental demonstrations of the elastic 
wave analogue of the LG-effect and some other 
instructive observations of nonlinear elastic and 
dissipative effect are described for samples containing 
individual cracks.  
 
Experimental demonstrations and interpretations. 
 
Observation of the LG-effect for elastic waves [16,8] 
   In order to experimentally study the role of cracks 
(including the LG-effect) we observed interaction of 
resonant longitudinal modes in glass rods containing 
1-3 corrugated thermally-produced cracks 2-3 mm in 
size (Fig. 2). An example of the observed modulation 
spectra of the initially sinusoidal probe wave under 
the action of the modulated stronger pump wave is 
shown in Fig. 3(a). In a reference rod without cracks, 
the modulation side lobes (existing due to residual 
parasite nonlinearities) were 25-40 dB lower than 
shown in Fig. 3 (a). Resonance curves for the probe 
wave [Fig. 3 (b)] obtained at different amplitudes of 
the second pump wave (without modulation) clearly 
demonstrate that primarily the dissipation, not the 
elasticity, was affected by the stronger wave in this 
experiment. Magnitudes and frequencies, at which the 
observed amplitude-dependent variations in 
dissipation were observed, agree well with estimates 
based on equations (4),(5) and (6). As argued above, 
for small enough strains 810~ −ε , estimated 
displacements Lε  of adjacent crack interfaces are 
subatomic in scale, so that neither hysteretic, nor 
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Fig. 3. Experimental observation of the elastic wave LG-
effect. (a) – Modulation spectrum of weak 2nd mode near 

11 kHz with 810~ −ε  caused by a stronger ( 610~ −
pε ) 

1st mode wave with carrier frequency ~3.6 kHz and slow 
amplitude modulation at 3 Hz. The inset shows the 
relative levels of the stronger and the weaker waves. 
(b) – Resonance curves for the probe wave at different 
stronger-wave levels, clearly illustrating a greater than 10% 
variation in the probe wave Q-factor. In contrast, the 
resonance frequency shift is hardly noticeable. The inset 
shows the same curves in normalized form. 

frictional effects can be important for the probe wave 
dissipation. Indeed, careful experimental study [16] of 
the amplitude dependencies for the observed 
modulation confirmed linear character of the weak 
wave dissipation. Quantitatively, estimates based on 
Eq. (6) and typical parameters for glass show that 
even a single contact-containing crack of a few 
millimeters in size suffices to explain the observed ~ 
10% variation in the initial magnitude of the quality-
factor of about 300-350 for the probe wave. In this 
simple experiment we have used a transparent 
materia l in which the cracks are easily visible . Their 
parameters may be directly and non-destructively  
estimated. These cracks are the only defects present, 
and there is no doubt that only their presence is 
responsible for the observed effects.  
 
Induced transparency and induced dissipation [17].  
   In order to better understand the observations 
presented below it is important first to recall the 
following. As was argued above, for small amplitude 
probe waves (say with strains 810~ −ε ) with 
subatomic displacements at the crack interface the 
frictional/hysteretic losses are not yet activated, 
whereas the thermoelastic coupling may be very 
efficient, especially at narrow inner contacts between 
the crack lips. For contacts of width Ll <<  the 
relaxation peak occurs at 2/ lDl ≈= ωω , where 

)/( cD ρκ=  is the temperature diffusion coefficient. 
For the whole crack, its relaxation frequency Lω  is 
determined by its scale lL >> , so that 

lL LD ωω <<≈ 2/ . For most rocks and glasses, typical 
Lω  for a millimeter-scale crack corresponds to 

fractions of a cycle/s, whereas for micrometer-width 
inner contacts the respective frequency may lie from 
kHz up to MHz band. Further, since the local 
separation of crack lips in the contact vicinity may be 
orders of magnitude smaller than the average crack 
opening, waves with moderate strain 56 1010~ −− −ε  

may easily perturb the inner microcontacts (and even 
cause their clapping), although the average crack 
opening remains hardly perturbed. For example, for a 
contact whose initial strain 0ε  and local applied stress 

0σ  are related by the Hertz-type [11] dependence 
3/2σε ∝ , the superimposed wave with oscillatory 

stress wσ  comparable to 0σ  may significantly reduce 
period-averaged contact strain >< ε , as schematically 
illustrated in Fig. 4. It is worth mentioning that similar 
rectification (demodulation) effects are well 
documented in nonlinear acoustics of the interfaces 
[18] and provide the basis for the ultrasonic force 
mode in atomic force microscopy [19]. The resultant 
reduction of the averaged contact width shifts the 
maximum of the thermoelastic losses at the contact to 
a higher frequency lω  (see inset in Fig.4). This should 
cause an increase in the quality factor of the sample 
resonances located lower than lω  in the frequency 
domain, but simultaneously decrease the quality 
factor for the resonances located higher than lω .  
   Among the fabricated samples we succeeded to 
choose one in which a thermally induced crack 
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Fig. 2. Schematically shown experimental 
configuration. 
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Fig. 4. Schematically shown softening of the contact by 
oscillating stress due to loading-unloading asymmetry. 
Initial static equilibrium ),(A 00 εσ= , and the perturbed 
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Fig. 6. Example of non-monotonous amplitude 
dependence of the pump -induced variations in 
dissipation and the probe wave resonance frequency. The 
inset shows the simulated averaged contact strain plotted 
against the pump -stress amplitude. 

demonstrated such a behavior. Figure 5 shows records 
of the probe-wave resonance peak below 4 kHz, 
which exhibited a pronounced increase in the quality 
factor under the pump-wave action, whereas the next 
mode above 10 kHz and a dozen or so other peaks 
within the observable band up to 100 kHz exhibited a 
decrease in the quality factor. In contrast to the 
opposite trends in the dissipation, the resonant 
frequencies for all peaks exhibited a consistent 
decrease, as should be expected owing to the time-
average softening of the micro-contact(s) induced by 
the pump wave. 
   Further increase of the oscillation amplitude, 

0σσ >w , transfers the contacts to the clapping regime, 
in which the averaged stiffness and size of near-
Hertzian contacts begin to increase again. In this case 
both the decrement of the probe-peak and its position 
in the frequency domain may become non-

monotonous functions of the pump-wave amplitude. 
Resonance curves shown in Fig. 6 demonstrate such a 
non-monotonous dependence on the pump-amplitude 
both for the amplitude (that is dissipation) and the 
frequency shift of one of the probe-wave peaks. The 
inset shows the variation in the averaged strain >< ε  
simulated for a Hertzian contact as a function of 
normalized oscillating stress 0/σσ w , which indicates 
similar non-monotonous behavior. 
    
Logarithmic in time slow dynamics. 
   Effects with slow dynamics that are logarithmic in 
time are remarkably common for many materials with 
granular and imperfect structure (logarithmic creep, 
ageing, magneto-relaxation, etc.). Recently 
logarithmic in time relaxation after acoustic stressing 
was found for rocks [20]. This universal log-time 
behavior is usually attributed to the complexity of 
dynamical processes in systems with wide distribution 
of energy barriers of some internal bonds which are, 
for example, broken by the activation and then are 
gradually restoring under action of thermal 
fluctuations. Note that logarithmic dynamics arises 
only for a suitable wide spectrum of the energy 
barriers, the origin of which and its relation to the 
material microstructure remains unknown [20]. Such a 
mechanism likely implies strong asymmetry between 
the relaxation and the bond breaking during the 
activation, which could be a fast process. 
   Recently, besides solids with numerous micro-
defects [20], observations of slow relaxation and 
memory effects were reported for interaction of 
ultrasonic waves with a single crack [21]. For 
parametric generation of sub- and super-harmonics of 
the “reading-out” elastic wave, the threshold 
amplitudes remained perturbed up to minutes after 
activating the crack by another intense wave.  
…In addition to studies of “instantaneous” effects, it 
seemed attractive to use the advantages of exploitation 
of independent pump and probe waves and to 
investigate whether individual cracks could exhibit 
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Pump wave strain is 610~ −ε .  
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Fig. 7. Examples of the log-time dependence of 
the dissipation (a) and the resonance frequency 
shift (b) for different peaks.  

slow-dynamic effects similar to those in [20] and to 
check the expected asymmetry between the activation 
and relaxation. To this end the experimental technique 
described above was supplemented by measurements 
of the slow evolution of the sample properties. We 
observed the temporal behavior of resonance peaks for 
a weak (probe) longitudinal wave with typical strain 

810−<ε  in glass rods subjected to action of another 
conditioning (pump) wave with typical strains up to 

56 1010~ −− −ε . The performed observations revealed 
that both the dissipation and the resonance frequencies 
exhibited pronounced slow dynamics. Figure 7a 
presents examples of variations in the resonance peak 
amplitudes plotted against the logarithm of time 
elapsed both after switching on or switching off the 
pump-wave. Figure 7b shows similar slow variations 

0/ ffδ  of the resonance frequency. Thus the observed 
logarithmic slow dynamics produced in the sample 
properties by individual cracks is strikingly similar to 
the slow relaxation effects found for rocks with 
inherent numerous defects [20]. A remarkable new 
revealed feature is that the log-time behavior during 
the crack-conditioning exhibits exactly the same slope 
(rate) as for the post-conditioning relaxation. 
   In the context of the above considered crack 
features, explanation for the slow logarithmic 
relaxation arrives rather naturally from the dynamics 
of thermal conduction in a cylindrical geometry. This 
geometry is specific for both the crack perimeter and 
the elongated inner microcontacts, which produce the 

main contribution to the dissipation and hence 
undergo local acoustic heating. The contact state may 
be strongly perturbed by nanoscale absolute 
distortions at the crack interfaces. Such distortions 
could be produced elastic oscillations as considered 
above for the “instantaneous” effects. Alternatively, 
similar distortions in the crack may be expected as a 
result of temperature inhomogenenities about 

11.0~ −∆T  K. For a typical thermal expansion 
coefficient 6103~ −×α -1K and crack size 

mL 3103~ −× , the thermoelastic displacement is 
estimated as 89 1010~ −− −∆TLα m, which is 
comparable with the instantaneous rectification 
effects. Note that direct infrared imaging of 
acoustically-induced heating of several degrees at the 
stress concentration areas at crack tips and lips is 
available [10]. The logarithmic slowing of the 
temperature rise (in the case of conditioning) in 2D-
geometry is due to the diminishing of the temperature 
gradients with time. Indeed, for a step-like (in time) 
cylindrical thermal source ),( trQ  localized in the area 
of a radius lr ≤ r l≤ , the 2D-equation for heat 
conduction )/(/ CQTDtT ρ=∆−∂∂ ⊥  yields an 
asymptotically logarithmic law for the temperature 
increase T∆  in the source vicinity:  

Dl
t

CD
kQ

T F

/
ln

4
)0(~

2πρ
=

≈ , for 12 / −=>>
l

Dlt ω      (7). 

Here ρ  and C  are the material density and specific 
heat, )(kQF  is the spatial Fourier transform of the 
source. For the subsequent cooling after switching off 
the source Q  at time 0tt = , there is also a log-time 
approximate solution: 
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valid for 00
2 / tttDl ≤−<<  and indicating the same 

slope as in (7), which is predetermined by the 
temperature spatial distribution produced by the initial 
heating. We already pointed out that equal slopes for 
the conditioning and relief were observed in the 
experiments (see Fig. 7), which is a strong argument 
supporting the heating-cooling mechanism. Indeed, 
the state of the stress-concentration areas is essentially 
different at rest and during intensive acoustic 
activation that causes contact clapping and 
 
Demonstration of memory in crack nonlinearity.   
Attempting to reveal slow dynamics in nonlinear 
crack-induced effects (for purposes of comparison 
with [21]), we faced a problem that the nonlinearly 
excited harmonics were essentially influenced by the 
system resonances, whose slow dynamics strongly 
masked possible memory in the nonlinear properties. 
We finally succeeded in observing a very clear 
manifestation of memory for the nonlinear effect of 
the cross-modulation [8,17] of the probe wave by a 
slowly-modulated pump wave. Figure 8 presents the 
modulation spectra obtained immediately after a few 
minutes of intensive conditioning of the sample and 
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after 5 minute pause. Since the stronger modulating 
wave also acted as a pump, after the pause we 
switched it on again only for the several seconds 
required to obtain the spectrum. There is a remarkable 
difference in the second side lobe amplitude 
indicating a significant change in the character of the 
crack-induced nonlinearity. In contrast, the amplitudes 
of the fundamental line and other side lobes are much 
more weakly perturbed, which assures that the whole 
resonance curve remained almost the same. 
 
Conclusion.  
   The observed variety of effects is shown to be 
consistently explained basing on a few well 
established features of cracks. The proposed 
mechanism of the acoustic wave-crack interaction 
essentially revises the role of thermo-elastic coupling 
in imperfect solids. These findings provide a new 
physical ins ight into acoustic -wave-crack interaction 
at “instantaneous” and slow-dynamics time-scales, 
and suggest a way to resolve some difficulties (e.g. 
low-strain dissipation) faced by conventionally used 
interpretations. The nonlinear effects observed have 
proven to be very sensitive indicators of presence 
even of single cracks in the sample. In particular, the 
LG-effect is advantageous as a new nonlinear-
modulation diagnostic method.  
   The study was supported in parts by RFBR grants 
No 02-02-16237, 02-02-08021-inno and by a French-
Russian project PAI-04521TM. 
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Fig. 8. Examples of cross-modulation spectra just 
after intensive conditioning (solid line) and 5 
minutes later (dashed line). 
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