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Abstract 
   The report presents results on investigation related 
to propagation and reflection of plane elastic waves in 
the acousto-optic crystal tellurium dioxide. The 
reflection of a slow shear elastic wave from a free and 
flat boundary separating the paratellurite crystal and 
vacuum was examined. The analysis was concentrated 
on the propagation and reflection of the waves in XY 
plane of TeO2 in the case of glancing acoustic 
incidence on the crystal boundary. The analysis 
reveals the peculiarity that as much as two elastic 
waves are reflected from the crystal surface. Energy 
flow of one of the reflected waves is directed 
approximately backwards with respect to the incident 
energy flow so that two energy flows form an angle in 
the incidence plane as narrow as a few degrees. It was 
also found that relative intensity of the unusually 
reflected wave is close to a unit in a wide variety of 
crystal cuts. It is proved that strong elastic anisotropy 
of the material is responsible for the extraordinary 
behaviour of the acoustic waves. Possible applications 
in acousto-optic devices of the examined phenomena 
are discussed in the presentation. 
 
Introduction 
   Single crystals of paratellurite TeO2 are widely used 
in modern instruments of light beams control. Unique 
physical features of the crystal provide perfect 
operation parameters of acousto-optic instruments that 
have been designed on base of the crystal [1,2]. It is 
known that the material is characterized by extremely 
strong anisotropy of its elastic properties [1-5]. 
Utilization of the anisotropy made it possible to 
develop novel modifications of the acousto-optic 
instruments, e.g. the close to collinear tunable filters 
[4,5]. Moreover, it is expected that new types of 
acousto-optic instruments may be designed if one 
utilizes the unique elastic properties of the crystal. 
Therefore, the goal of the paper consists in the 
analysis of the elastic wave propagation and reflection 
in TeO2 in order to design new devices of light beam 
control. 

 
Acoustic properties of paratellurite 

 Fruitful information may be obtained if dependence 
of acoustic phase velocity on direction of sound 
propagation in a crystal is known. There exists a 
method to calculate the magnitudes of the acoustic 
phase velocities  V  in the crystalline materials. The 
method is based on application of the Christoffel 

equation [1,3]. It is known that the crystal of 
paratellurite belongs to the tetragonal crystalline 
structure. Substituting known values of the elastic 
constants  cij  in the Christoffel equation, in the case of 
XY plane of tellurium dioxide, it is possible to obtain 
the phase velocity values for the quasi-shear and the 
quasi-longitudinal waves   
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where ρ  is the density of the material and the angle 
ϕ  is measured relatively to the axis X [1]. Slowness 
curves in XY plane of TeO2 are shown in figure 1. 

 
Figure 1:  Acoustic slowness curve of paratellurite 

                                                                               
Analysis of the figure proves that the crystal is 
characterized by the strong dependence of the phase 
velocity on the direction of propagation.  
   On base of equation (1) it is also possible to 
calculate the acoustic obliquity angle of the waves, i.e. 
the angle ψ  between the phase and  V  and group Vg 
velocities of ultrasound. The dependence of the 
obliquity angles for the quasi-shear and quasi-
longitudinal acoustic modes on the angle ϕ  
determining the propagation relatively to the axis X  is 
plotted in figure 2. It seen that the obliquity angle for 
the slow shear acoustic mode in tellurium dioxide is 
as large as 0

1 74ψ = . It will be shown that the large 
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obliquity angles between the phase velocity vector 
and the Poyinting vector may be responsible for the 
unusual propagation and reflection of the elastic 
waves in the crystal [3,4]. 

 
Figure 2: Acoustic obliquity angles in TeO2 

 
Reflection of elastic waves in rectangular sample 
   A particular case of the acoustic reflection is 
examined in this paper when the tellurium dioxide 
crystal is cut in form of a rectangular specimen and 
the propagation and reflection of the waves takes 
place in XY plane of the material. General scheme of 
the reflection is presented in figure 3. It is seen in the 

 
Figure 3:  General scheme of reflection 

 
figure 3 that the elastic waves are generated in the 
crystal by means of the piezoelectric transducer. Slow 
shear elastic waves are launched in the crystal at the 
angle θ   formed by the axis X of paratellurite and the 
acoustic phase velocity vector  V1 . It is clear that the 
bottom facet of the crystal is also rotated at the angle 
θ  with respect to the axis X . Consequently, the wave 
vector of the incident acoustic wave occurs parallel to 
the border separating the crystal and vacuum. It 
indicates that the incidence is glancing.  
   Energy flow and the group velocity vector Vg1 of the 
initial wave are directed in the sample at the angle  1ψ  
relatively to the phase velocity vector, as illustrated in 
the picture. The energy flow of the acoustic wave 
from the transducer propagates to the border 
separating the material and vacuum.  

   Analysis confirms that, after the reflection, as much 
as two elastic waves propagate form the bottom facet 
in the sample. One of the waves possesses the phase 
velocity vector V2  and the group velocity vector Vg2  
that forms the obliquity angle 2ψ  with the acoustic 
wave vector. This wave is reflected in the crystal in 
the traditional manner. On the other hand, there exists 
another reflected wave that is propagating 
approximately backwards with respect to the incident 
acoustic wave. The second reflected wave possesses 
the phase and group velocities vectors V3 and Vg3 
correspondingly. Energy flow of this wave forms the 
angle 3ψ  with the phase velocity vector.     
 

 
Figure 4:  Mutual orientation of acoustic wave vectors 
 
   The angle Ω  separates the energy flows of the 
initial and the second reflected waves. This angle may 
be seen in figure 3. It will be shown that this angle in 
the crystal may be as narrow as a few degrees.  
 
Backward propagation of reflected acoustic wave 
   The unusual reflection of ultrasound may be 
explained by figure 4 where the directions of the wave 
vectors  K2  and  K3  corresponding to the two 
reflected beams are shown. As mentioned, the wave 
vector  K1  of the incident beam is directed parallel to 
the bottom facet of the crystal. The length of the 
projection of the wave vector  K1  on the boundary is 
equal to the length of the wave vector itself because 
the specimen is rectangular and the acoustic incidence 
is glancing.  
   According to the laws of wave motion, the 
directions of the two reflected wave vectors K2  and  
K3  may be found, in the traditional manner, from the 
intersections of the supplementary dash line with the 
dotted slowness curve [1]. As seen, the dash line 
drawn at the end of the acoustic vector with the length 
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equal to  K1  is orthogonal to the boundary between 
the crystal and vacuum.  
   The well-known requirement of equal projections of 
wave vectors representing the incident and the 
reflected beams is satisfied in this way in the crystal 
[1,3]. Therefore, during the propagation and reflection 
of the waves in paratellurite, the projections of the 
wave vectors representing in Fig. 4 the ordinary 
reflected beam and the extraordinary reflected ray 
appear equal to the length of the wave vector   K1 . 
   If the directions of all wave vectors are known then 
it is possible to determine the directions of the 
acoustic energy flow during the reflection. The picture 
also illustrates that the group velocity vector of the 
initial beam is orthogonal to the slowness surface of 
the material in the point where the vector K1 begins at 
the slowness surface.  
   As for the first reflected beam, data in figure 4 prove 
that the wave vector  K2  is directed outside the 
crystal. It means that the acoustic wave fronts of this 
reflected beam are tilted clock-wise relatively to the 
direction of the boundary. On the contrary, the energy 
flow of the first reflected beam is propagating at the 
angle 2ψ  inside the crystal.    
   In order to understand the origin of the peculiar 
reflection at the border, it was necessary to find the 
direction of the acoustic group velocity of the second 
reflected beam. This beam is represented in figure. 4 
by the wave vector K3 and the acoustic walkoff angle 

3ψ . It is clear that the direction of the vector K3 in 

the crystal, similar to the direction of the vector  K2 , 
may be found from the intersection of the slowness 
curve with of the dash line. As proved by figure 4, the 
wave vector K3  is directed inside the crystal and 
away from the bottom facet of the specimen. 
However, the energy flow and the group velocity 
vector Vg3 of this beam are propagating approximately 
backwards relatively to the initial energy flow. It is 
evident that the revealed peculiarity originates from 
the extremely large value of the acoustic obliquity 
angle 3ψ  in tellurium dioxide while the large acoustic 
walkoff angle is the consequence of the strong elastic 
anisotropy of the material [3,4].  
   In this paper, the values of the acoustic obliquity 
angles of the three acoustic beams 1ψ ,   2ψ   and  3ψ  

have been calculated for the cuts of the crystal with 
the angle θ  limited to 00 45θ< < . During the 
analysis, the angle Ω  separating in space the acoustic 
columns of the incident and the extraordinary 
reflected beam was also determined for the values of 
the angle θ . It was found that the angle between the 
two acoustic columns occurs amazingly narrow 

010Ω <  over the wide range of the propagation 
angles 0 04 32θ< < .  

  
 

Figure 5:  Reflection coefficients in paratellurite 

 
   The performed calculations proved that the 
minimum value of the separation angle in tellurium 
dioxide occurs as low as 05.3Ω = . It means that one 
of the reflected acoustic beams is propagating in the 
crystal like a boomerang, i.e. practically backwards 
relatively to the incident beam.  
 
Calculation of reflection coefficients  
   In order to fulfill the analysis, mutual distribution of 
the incident elastic energy between the two reflected 
waves was evaluated. The reflection coefficients  R2  
and  R3  of the two waves were calculated for the 
purpose. The coefficients were defined in the 
traditional manner [3.4, 0], where the value of each of 
the two coefficients was chosen equal to the ratio of 
normal projections of energy flows of the 
corresponding reflected beams and the initial beam.  
   Data in figure 5 illustrate the dependence of the 
reflection coefficients  R2  and  R3  on the angle θ  . It 
may be seen in the figure that there exist as much as 
four intervals of the angle θ  corresponding to 
different behaviour of the reflection coefficients in the 
specimen. These intervals are 00 3θ< ≤ , 
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0 03 24.13θ< < , the interval near 024.13θ ≈   and 
0 024.13 45θ< < .  

   The analysis confirms that if the crystal is cut with 
the angle θ  close to zero then the major amount of 
the incident acoustic energy is reflected in form of the 
traditional elastic wave. It is seen in figure 5 that the 
coefficient  R2   in this case is close to a unit at 0θ → . 
On the other hand, the growth of the angle θ  is 
accompanied by the fast increase of the energy in the 
extraordinary reflected wave while the intensity of the 
ordinary reflected wave vanishes. At the cut angle 

07θ = , the coefficients R2 = 0 and R3 = 1.0. 
Therefore, this angle may be defined as the Brewster 
angle 0

1 7Bθ =  because one of the reflected waves is 
absent. It should be emphasized that if the angle θ  is 
limited by the interval 0 03 24.1θ< ≤  then the major 
amount of the elastic energy is concentrated in the 
extraordinary reflected wave.  
   The carried out calculations confirm that the interval 
of the crystal cuts near 024.13θ ≈  includes two 
characteristic angles one of which is the second 
Brewster angle 2Bθ  while the other angle is the 
critical angle cθ . It was found that the values of the 
Brewster and the critical angles occur close to each 
 other 0

2 24.13Bθ ≈   and 024.131cθ ≈ . 

  
Figure 6:  Collinear acousto-optic interaction  

 
   As for the energy flow, if the cut angle θ  is 
growing from 023θ =   to 0

2 24.13Bθ ≈  then the 
reflection coefficient  R2  is rapidly increasing to a 
unit while the energy flow of the extraordinary 
reflected beam is approaching the zero value. 
Consequently, one observes total reflection of the 
incident energy along the direction of the ordinary 
reflected wave at 0

2 24.13Bθ ≈ .   
   Further increase of the cut angle θ   from 

0
2 24.13Bθ ≈ to the critical angle  024.131cθ ≈  is  

accompanied by the drop in the energy of the ordinary 
reflected wave so that  R2  = 0. It means that the elastic 
energy is reflected from the border at the critical angle  

024.131cθ =  as the extraordinary wave. Finally, the 

case with 024.131θ ≥  corresponds to a single 
reflected wave. As mentioned, this wave propagates in 
a wide interval of propagation angles practically 
backwards relatively to the energy of the incident 
beam.  
 
Application of backward reflection in Acousto-
Optic devices 
   The examined reflection phenomena may be applied 
in acousto-optic devices. One of these devices is 
schematically shown in figure 6. The acoustic 
reflection in the cell of a collinear filter takes place in 
such a manner that the reflected energy flow is 
propagating in the instrument orthogonally to the 
bottom facet of the sample. This peculiar reflection 
takes place in paratellurite if  0

1 90ψ +Ω = . 
Consequently, if an optical beam is sent normally to 
the bottom facet of the crystal then a collinear 
interaction of light and sound may be observed in the 
filter [1,2,5].  
   From the point of view of practice, the normal light 
incidence should be considered as an advantage of the 
design compared to the existing models of the 
collinear filters on paratellurite [1,2,5]. It may also be 
noted that only a single reflected wave is propagating 
in the cell of the filter because the crystal in figure. 6 
is cut with the angle of propagation θ  exceeding the 
critical angle. It provides total utilization of the elastic 
energy in the cell.  
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