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Introduction
We simulate non-stationary near-field of a phased

transducer at the surface of an isotropic homogeneous
elastic half-space. The transducer is assumed large
compared to the characteristic wavelength.
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Figure 1: Wavefronts

We focus on effects of non-uniformity of pressure
(see Fig. 2). Predictions of the asymptotic theory [1],
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Figure 2: Pressure distribution on the transducer

aperture

[2], [3], [4], [5] are tested against numerics and their
agreement is found excellent.

Mathematical formulation
The 2D displacement fieldu = u(x, z, t) is de-

scribed by

1

V 2
p

grad divu−
1

V 2
s

rot rotu−
∂2

u

∂t2
= 0, z > 0,

(1)

Vp and Vs are velocities of P- and S-waves, and the
boundary stresses are

σxx|z=0 = σxz|z=0 = 0, σzz|z=0 = P (x)F (t). (2)

Hereσxx andσxz are tangent components of the linear
stress tensor, andσzz its normal component,P (x) is
the density of the external pressure distribution on the
boundary, andF (t) is the input signal. We also assume
the initial conditions

u|t=0 = 0, ∂u/∂t|t=0 = 0.

We apply the numerical method [6], [7] based on a
velocity-stress formulation, where the velocity field is

v = ∂u/∂t,

and for convenient reasons we will work with the ve-
locity in the following.

Asymptotic theory
Let Fc be the characteristic frequency of the signal

F (t), kp = 2πFc/Vp characteristic P-wavenumber,L
the size of the transducer.

We assume that the transducer is large,

kpL >> 1, (3)

that the pressure densityP (x) is smooth on the trans-
ducer aperture and that the near-zone condition holds

kpL
2/z >> 1, (4)

wherez is the depth of observation points.

0.1 ‘Main’ components of plane waves
For the ‘main’ components of P- and S-waves the

asymptotic theory [4], [8], [5] predicts:

vP
z (x, z, t) =

P (x)

ρVp
F (t − z/Vp),

vS
x (x, z, t) =

2Vs

ρVp
P

′

(x)

∫ t−z/Vs

−∞

F (s)ds,

(5)

ρ being the volume density. The first formula is obvi-
ous while the second is sophisticated. No plane S-wave
exist for the constant pressure density.

0.2 Anomalous, or additional components of plane
waves

In reality, P-wave has also a transverse component
and the S wave a longitudinal component (e. g.[1], [2]).
For the above plane waves we have, respectively, the
following expressions for the ‘additional’ components

vP
x (x, z, t) = −Vp

∫ t−z/Vp

−∞

∂

∂x
vP
z (x, z, τ)dτ,

vS
z = Vs

∫ t−z/Vs

−∞

∂

∂x
vS
x (x, z, τ)dτ.

(6)

Formulas (5),(6) will be checked in the course of sim-
ulations of total wavefield.
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The numerical method
We use a numerical method developed in [6] for solv-

ing propagation and diffraction problems in heteroge-
neous anisotropic media. This method is based on the
velocity-stress formulation.

In [6], [7], new mixed finite elements, the so-called
Qdiv

1
−Q0 element, based on the use of a regular grid in

space have been introduced in order to approximate this
formulation. Their main specificity is that they lead to
an explicit scheme in time, thanks to the fact that all the
degrees of freedom of the stress tensor are located at the
same nodes. We only summarize here the properties of
the scheme: second order and explicit in time, second
order and based on a regular quadrilateral mesh in space
(implementation like finite differences), taking into ac-
count the symmetry of the stress tensor in a strong way.
We refer to [6], [7] for more details on these elements
(convergence analysis, dispersion analysis...).

Numerical simulations
In this section, we consider a domain0 < x < Lx,

0 < z < Lz, with Lx = 20, Lz = 10 (see Fig 3). The
time domain signal is defined as

F (t) =







sin(2πFct), in [0, 1

2Fc
] ∪ [ 1

Fc
, 3

2Fc
]

2 sin(2πFct), in [ 1

2Fc
, 3

2Fc
]

0, elsewhere
(7)

with Fc = 1.9. The velocities in the medium areVp =
2.78 andVs = 1.42, which gives a characteristic wave
length for P waves ofλp = 1.46.

The solution will be presented either on snapshots (at
a fixed time), or at some fixed observation points (with
respect to time), located at the same depthzobs = Lz/4
(see Figure 3).
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Figure 3: The computational domain and the
observation points

Role of the smoothness of the pressure field
In this numerical experiment, we investigate the role

of the smoothness of the pressure field on the strength
of edge waves. We consider here a pressure imposed
on a large transducer, of length equal toL = 16 >>
λp = 1.4, so that both assumptions (4) and (3) are sat-
isfied. The simulations are done with three different

pressure fields: (1) discontinuous, (2) continuous (C0),
(3) differentiable (C1). When the pressure is constant
for −∞ < x < +∞, we would have only a down-
going P-wave. Edge and head waves are predicted (by
asymptotic theory not discussed here (see e.g. [3]) from
the points whereP (x) is not smooth.

C0

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250
The normal stress imposed on the transducer

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250
The normal stress imposed on the transducer

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250
The normal stress imposed on the transducer

Discontinuous C1

Figure 4: Normal stresses imposed at the surface

Vertical componentvz Horizontal componentvx

Figure 5: Influence of the smoothness of the pressure
field. Top: discontinuous pressure. Middle:C0

pressure. Bottom:C1 pressure.

In Figure 5 we represent the two components of the
computed field, for the three pressure fields (with the
same scale), at timet = 2.7s. The vertical component
vz is mainly composed with the plane P-wave. For a
discontinuous pressure we observe strong P and S edge
waves and some head waves. Their amplitudes strongly
decrease in theC0 case and no significant difference is
seen with theC1 one. The horizontal componentvx of
the plane P-wave should be zero whereP (x) is constant
and really the field is mainly composed of P and S edge
waves whose amplitudes decrease with theC0 pressure
field.

We now observe in Figure 6 the comparison between
the computed vertical componentvz along the time and
the asymptotically predicted component for a constant
pressurevP

z , at the two observation points: point 1 and
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point 3 (see Fig. 3). We observe a good agreement
between asymptotics and numerics. It is particularly
good forC0 andC1 pressures. Minor differences for
the case of discontinuous pressure are due to the pres-
ence of strong edge waves, for which we did not apply
here any asymptotics.
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Figure 6: Comparison between the predictedvP
z for a

constant pressure field and the computedvz for a (1)
discontinuous, (2)C0, (3) C1 pressure field

Role of the size of the transducer for a regular pressure
field

We now compare the asymptotic and numerical fields
for a regular pressure field whose aperture varies from
L = Lx to L = 0.1Lx (see Figure 7). In terms of the P
wavelength, the four transducer’s length areL = 13λp,
L = 8λp, L = 5λp, L = 1.3λp.
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Figure 7: Normal stresses imposed at the surface

Snapshots, represented in Fig. 8, show that for the
three largest transducers, i.e. untilL ≥ 5λp, the verti-
cal component of the velocityvz is mainly composed of
a plane P-wave, as predicted by the asympotics. How-
ever, some (rather small) edge waves appear when the
size decreases. Concerning the horizontal component
vx, it is not only composed with a plane S-wave, but
also with a strong additional component of the plane P-
wave (6). For the last transducer, whose length is of
the same order as the P wavelength, it clearly acts as a
point source and does not produce plane waves, since
the assumption (3) is not satisfied anymore.

We now compare in Figure 9 the asymptotic predic-
tions with the computed field, at the observation Point 2

Vertical componentvz Horizontal componentvx

Figure 8: Snapshots att = 2.7s. From top to bottom:
L = 20, L = 12, L = 8, L = 2

(see Fig. 3). The left column corresponds to the results
for the vertical component and the right one to the hori-
zontal component. On each figure, we have represented
the computed field, the predictions with the “main” and
additional components. Concerning the vertical com-
ponentvz, the asymptotic predictionsvP

z andvP
z + vS

z

coincide very well with the computed field, for the three
transducers satisfyingL ≥ 5λp. Actually the additional
componentvS

z is negligible. On the other hand, con-
cerning the horizontal component, one clearly observes
the first arrival, corresponding to the additional com-
ponent of plane P wave, which is approximately of the
same amplitude as the “main” component of the plane
S-wavevS

x . Taking into account the additional compo-
nent (6) of the P wave was necessary to have a good
agreement for the largest transducer. Small differences
between asymptotics and numerics appear forL = 8λp,
becoming larger forL = 5λp but still not too large.
Finally, according to the comments on the snapshots,
asymptotics and numerics become very different for the
smallest transducerL = 1.3λp, in which case the obser-
vation point is not anymore under the transducer, and
assumption (3) is clearly not satisfied.

Conclusion

In conclusion, the asymptotic theory predicts the so-
lution in a very accurate way, provided that : (i) the
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Figure 9: Comparison between the asymptotic
predictions and the numerical solution, at observation

Point 2, for a regular pressure field. From top to
bottom: (1)L = 20, (2) L = 12, (3) L = 8, (4) L = 2

pressure field is smooth enough, so that it does not
produce too strong edge waves, (ii) the transducer is
“large” enough compared to the P-wavelength (at least
five times the wavelength).

Also, such predictions of the asymptotic theory as:
(i) the existence of the plane S-wave for a non-constant
pressure, (ii) the suppression of edge waves by taking
smooth transducers, are confirmed by numerics.
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