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Abstract 
The physical meaning of the notions of wave 
momentum and radiative stress in elastic bodies is 
considered. Of great importance for defining and 
calculating these quantities are the variables in which 
the wave processes in the medium are described. In 
Euler variables, the radiative stress is defined as the 
time average of the momentum flux of the medium 
across the boundary of a volume that is stationary in 
space. It is shown that, physically, the wave 
momentum can be defined only in Euler variables. In 
the linear approximation of the small perturbation 
theory the wave momentum is a quadratic component 
of the total mechanical momentum of the medium. In 
the second approximation of the perturbation theory, 
the wave momentum no longer has a rigorous 
definition. However, the concept of wave momentum 
borrowed from the linear approximation can be used 
for the calculation of average values of stresses and 
deformations, provided the body is not moving as a 
whole. 
 
Introduction. 
When wave processes are investigated in elastic 
bodies, in addition to the variables such as 
displacement, oscillatory velocity and so on, 
quantities that are constant in time, i.e., are 
conserved,  are encountered too. These include 
quantities that are quadratic in the wave amplitude, in 
particular, energy and wave pressure (radiative 
stress). The origin of radiative stresses is related to 
the change of the time averaged momentum of the 
medium transported by the wave [1-3]. The change of 
wave momentum may be caused by scattering by 
inhomogeneities, reflection on obstacles, absorption, 
or radiation. The notions of wave momentum and 
radiative stresses have been employed in the analysis 
of wave processes in continuous media but not so 
often, so that the present study aims at revealing the 
physical meaning and the contents of these notions 
for wave processes in elastic media. 

The radiative stress (wave pressure) and the 
related wave momentum are typical for waves of 
arbitrary nature: electromagnetic, optical, acoustic, 
surface waves on water, and elastic waves in solids. 
However, while the wave pressure and momentum 
have been investigated in much detail, both 

theoretically and experimentally, for optical and 
electromagnetic waves in a vacuum, the existence 
and physical meaning of the wave momentum in a 
continuous medium are still not quite transparent 
and are still being discussed in the scientific 
literature, so that there is need for a precise study. 
The definition of wave momentum and radiative 
stresses for waves in elastic bodies differs from that 
for electromagnetic waves or acoustic waves in 
liquid and gaseous media. 

The wave pressure and momentum which we are 
interested in are quadratic in wave amplitudes and, 
consequently, are quantities of the second order of 
smallness as compared to the instantaneous elastic 
stresses and deformations. In a general case, solution 
of the problem in a linear approximation is 
insufficient for calculation of wave momentum and 
pressure in a medium, and quantities in the second 
approximation need to be taken into account. For the 
explanation of the phenomenon of wave momentum 
in problems of hydro- and gas dynamics, nonlinear 
equations of the medium motion need to be 
analysed. In this case, appearance of wave 
momentum is attributed to the secondary flows 
generated by the acoustic field, and one has to go 
beyond the scope of one-dimensional problems and 
consider sound beams and secondary flows 
produced by the acoustic field. In contrast to 
hydrodynamics, there are no secondary flows in 
elastic bodies, and the wave momentum and 
radiative stresses can be addressed in the framework 
of a one-dimensional problem, with allowance for 
the nonlinearity of the equations of motion. 

The motion of a medium in continuum 
mechanics is traditionally described by two 
methods: in Euler variables related to the reference 
frame of an observer (laboratory frame of reference), 
and in Lagrangian variables strictly attached to 
particles of the medium at the initial instant of time. 
For the correct physical interpretation of theoretical 
results it is essential to know in which variables 
kinematic and dynamical characteristics of the 
medium motion are calculated. 
In Euler variables these quantities are calculated for 
the medium enclosed in a definite volume of space 
that is stationary relative to the observer. In 
Lagrangian variables these quantities are calculated 
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for a volume of the medium consisting of the same 
particles. Consequently, this volume is constantly 
changing relative to the observer, with the law of 
motion of a body, the bounding surface being 
determined by the motion of particles in the medium. 
Hence, it should be born in mind that, from the 
viewpoint of the observer, kinematic and dynamical 
quantities in Euler and Lagrangian variables are 
calculated for different physical situations and, 
generally, lead to different results. Calculations show 
that such discrepancies are manifested in the second 
and higher orders of the perturbation theory only. But 
the quantities of radiative stress and wave momentum 
of interest to us are of the second order in wave 
amplitudes; therefore the difference between the 
Euler and Lagrangian descriptions of wave motions 
need to be taken into account [5].  
 
General relationships. 
We suppose that no external forces act on the 
medium where the motions occur only due to internal 
stresses. In Euler variables , the isentropic 
(adiabatic) deformations of the elastic medium are 
governed by equations: 
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Here,  is the velocity of particles in the medium, 
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ik and εik  are the stress and strain 
tensors, respectively, and U is the internal energy per 
mass unit. This set of equations is closed by adding 
expressions relating the medium deformation and the 
velocity of its particles to the displacement field 
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From equations (1)-(3) we can obtain equations for 
the transfer of momentum  as ii vq ρ=
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where the  is the momentum flux 
density that has the dimension of stress. From (5) it 

follows that the change of momentum in a finite 
volume  is equal to [1, 2] 
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For a the sake of simplicity, in further considerations 
we shall consider only a one-dimensional problem 
concerning travelling longitudinal waves in a thin 
rod. Right subscripts x and t will now denote time 
and space derivatives. In this case the time rate of 
change of momentum for a segment of a rod looks 
like:
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Here, the square brackets denote the difference. 
Equation (7) is a generalization of the second 
Newton law to a finite element of the continuous 
medium confined between fixed sections  and . 
Consequently, the right-hand side of (7) contains an 
expression for the a pseudo-force acting on a 
medium element : 
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Following L. Brillouin [3], the time independent 
component of force : 
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where  is the time interval of averaging, will be 
called radiative stress (i.e., the "force of wave 
pressure"). Hereinafter we suppose that parameters  

T

σρ ,  and  change only under the action of a 
deformation wave. From the definition of the 
radiative stress (9) it follows that it differs from the 
constant component of elastic stress 

v

σ  by a value 
equal to twice the kinetic energy. The portion of the 
total momentum of the medium, , related to the 
deformation wave will be referred to as wave 
momentum.  

vρ

Note that the wave momentum is not identical 
to the total momentum of the medium because 
the wave energy is not equal to the total energy 
of the medium. In some works, to avoid 
confusion between total momentum of the 
medium  and wave momentum, the latter is 
called pseudomomentum. The expression of the 
wave momentum starts with quadratic quantities 
in the wave amplitude. Therefore its time 

vρ
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average for a travelling periodic wave is 
nonzero. This indicates that a longitudinal wave 
travelling in one direction cannot be excited in a 
rod if a nonzero momentum is not specified in 
the medium. 

Our further analysis will be carried out using the 
method of successive approximations assuming that 
in the neighbourhood of the stationary state the 
sought quantities can be represented in the form  

 ,0 ρρρρ ′′+′+=  
, , σσσ ′′+′=′′+′= uuu  

, ttxt uuuu ′′+′′+′=′′+′= ννν   (10) 
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where one prime denotes quantities of the first order 
of smallness ( , and two primes are 
for quantities of the second order of smallness 

)10 <<=′ µρρ

( 1~~ <<′′′′′′ µρρ vv ) . The expressions expanded 
in terms of perturbations for the momentum density 
to an accuracy of ( )3

xuO ′  are written in the form 

( vOvvvv ′′′+′′+′′+′= ρρρρ 00 )ρ .   (11) 

The force of wave pressure on an absolutely 
absorbing obstacle (i.e., Π ), to the same 
accuracy, is equal to 
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For nonlinear longitudinal waves in a thin rod stress 

and strain are coupled by a relation σ , 
where E and α are the linear and nonlinear elasticity 
coefficients, respectively  

2εαε +=Е

 
The effects of the first approximation  
In this case the small perturbations in a rod caused by 
a deformation wave will be described by a linear 
equation for displacement u : ( )tx,′
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and perturbations of all the other quantities will be 
expressed through its derivatives  
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It is easy to show that the wave equation has the 
integral of motion (strict conservation law) 
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that is obtained from (13) by multiplying it by , 
rearranging and grouping. This equation represents 
the transport of wave momentum 

xu ′

xtuug ′′−= 0ρ .    (16) 

The quantity numerically equal to the energy of a 
linear wave is in this case the density flux of wave 
momentum (Note: This may be an artifact of the 
one-dimensional nature of the discussed problem; cf. 
Maugin [4], p.211). The equation for the transport of 
momentum (5) is then written in the form 
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One can readily see that the linear terms satisfy the 
equation of motion (13), and the quadratic terms 
give 
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that coincides (on the average in time) with the 
equation for the transfer o
because 

f wave momentum (15) 
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approximation, the momentum density (11) per unit 
length is made of two contributions since  

xtt uuuq ′′−′= 00 ρρ       (19) 

The first contribution is a linear function of the 
particle velocity. It is always related to mass 
transport. It differs from zero even in the absence of 
deformation wave, e.g., during uniform motion of a 
rod as a whole when u  and u . The 
second contribution to the momentum density, is a 
quadratic quantity with respect to the wave variable 

; it differs from the first contribution 
significantly. It is generated due to the presence of a 
deformation wave in the rod and it reduces to zero in 
its absence. The time average of the difference of its 
fluxes across sections  and  determines the 
wave pressure force acting on the element of the rod 
in the direction of wave propagation.  
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The effects of the second approximation  
The equation of momentum transfer takes the form 
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Taking into account that quantities in the first 
approximation satisfy equation (13) we obtain a 
linear inhomogeneous equation for quantities of the 
second order of smallness  
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All the other second-order perturbations , , 
, σ  are expressed through derivatives of  and 
 by the following formulas 
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For obtaining a closed problem in the second 
approximation, equation (21) must be supplemented 
by initial and boundary conditions. One should bear 
in mind that boundary conditions should be 
introduced already for variable values of coordinates 
because displacements of the boundaries also have 
the second order of smallness. Equation (21) is an 
equation for the linear wave  in a medium 
with distributed source of external force in the right-
hand side, the density of which is determined by the 
first-order perturbation . The expressions for 
the momentum density (11) and wave pressure force 
(12) in the second approximation are written as 
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Note that, whereas new quadratic terms enter the 
expression for  only additively, the expression for 
momentum density (23) is significantly altered in 
comparison with the first approximation (19). 

P

The solution of the problem in the second 
approximation is much more complex because in 
Euler variables the second boundary condition must 
be written at a movable boundary . However, 
some features of wave processes in the second 
approximation that are of interest to us can be found 
without solving the corresponding boundary value 
problem [5].  
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Conclusions 
In defining the physical meaning of one or another 
theoretical result in continuum mechanics one should 

proceed from the fact that an observer 
(experimentalist) is in a laboratory frame of 
reference that consists of a time and spatial (Euler) 
coordinate system. Therefore, the quantities 
calculated in Euler variables are regarded to be 
observable (i.e., true) physical quantities. Thus, the 
wave pressure force and the wave momentum 
defined in Euler coordinates should be considered as 
physically meaningful variables. If one consistently 
keeps to these definitions of radiative stress and 
wave transported momentum, then the same 
physical results will be obtained, independently of 
the method of description of the wave field.  

A sufficiently rigorous mathematical definition 
of the notion of wave momentum is possible only at 
the first approximation in Euler variables. It is a 
quadratic component of the body momentum related 
to variations of the medium density in the wave field 
(16). Wave momentum no longer has a rigorous 
mathematical definition in the second 
approximation. But its notion can be successfully 
used in a number of problems that require 
calculation of averaged values, for instance, when 
there is no time averaged body motion. 
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