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Abstract 
   An inverse method is proposed for the determination 
of the “viscoelastic anisotropy” of material plates 
from the plane-wave transmitted acoustic field. The 
original aspect lies in the lack of presuming choice for 
the rheologic model. The inversion technique allows 
one to evaluate, over a limited frequency band, the 
complex stiffnesses as frequency-dependent functions. 
The reliability of the process for measuring the 
dynamic properties of the medium is demonstrated 
using simulated data of which frequency-dependence 
ensures causal mechanical behavior. We demonstrate 
that this technique allows one to identify a global 
”viscoelastic anisotropy” of materials equally well for 
thin or thick specimens, and for dispersive as well as 
non-dispersive media. Finally a discussion is 
introduced concerning the sense of this measure on 
composite or heterogeneous materials and furthermore 
the homogenization validity. 
 
Introduction 
   Ultrasonic waves are nowadays extensively used to 
investigate the internal microstructure of materials. 
Nevertheless, study of the acoustic phenomena 
generated by heterogeneities still remains an active 
research domain. When the wave propagation 
modeling is in development, it appears hazardous to 
think of an inversion process allowing the 
characterization of materials. However, observing that 
such media act on ultrasonic waves as dispersive and 
damping filters, a complex-valued stiffness tensor is 
usually introduced, assuming materials behave as 
linearly viscoelastic bodies.  
   Identification of viscoelastic properties commonly 
requires an a priori choice of the rheologic model. 
While the real parts of the stiffnesses are assumed to 
be constant, the imaginary parts are chosen with a 
polynomial-frequency dependence. Observe that this 
dependence for the stiffnesses does not satisfy the 
causality condition. In addition, when the material 
macroscopic behavior is unknown, the identification 
of the material properties cannot be performed by 
fixing beforehand a given frequency dependence. It is 
also important to note that, whatever the inspected 
material, the imaginary parts of all the stiffnesses are 
assumed to have the same frequency dependence. 
Thus, while the magnitude of all the stiffness tensor 
components may differ from each other (i.e. 

anisotropy on the magnitude of the components), 
these complex-valued stiffnesses follow the same 
frequency-variation (i.e. homogeneous frequency 
dependence). 
   The proposed technique, here called the “local” 
process, presents the advantage to make no 
assumption on the rheologic model. The identified 
viscoelastic behavior can thus be, in the most general 
case, anisotropic for the magnitude as well as for the 
frequency dependence of the stiffnesses.  
   The modeling of the material behavior is presented 
with the principles of the inversion process. Next, the 
reliability of the “local” characterization procedure is 
investigated by means of numerical simulations. Its 
interest, lying in its generality, with respect to the 
commonly-used approach, here called the “global” 
reconstruction, is then pointed out. 
 
Modeling assumptions and method principle 
 
Generalized constitutive law for viscoelastic 
anisotropic material 
For a linearly viscoleastic medium, the time-
dependent constitutive relation, relating the stress 
tensor  to the strain-rate tensor ( , is written  
as [1] 
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where ijkl  represents the tensor of relaxation 
functions and  is the convolution product. By using 
the properties of the complex Fourier transform, 
Eq. (1) becomes, for any angular frequency , 
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where  and ε  stand for the Fourier transforms (or 
spectra) of σ  and , respectively. The functions 

 are, in analogy with the elastic case, the 
components of the material stiffness tensor. However, 
in the viscoelastic case, these quantities are complex-
valued and frequency dependent. Using the 
abbreviated subscripts notation, the stiffnesses are 
then expressed as 
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where  is the imaginary unit, and C  and C  the 
real and imaginary parts, respectively. Observe that, 
from a physical point of view, these two functions 
cannot be independent. We know that a passive 
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system does not respond before an excitation or 
“cause” is applied. The causality principle can then be 
expressed through the Kramers-Krönig relations [2], 
which establish a dependence between C  and C . IJ′
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By assuming plane wave propagation, the analytical 
expression of the transfer function  in transmission 
can be used to simulate the temporal waveform y t , 
for a given couple of angles ( , by  

nH
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( )n

,nθ ψ
 
Debye relaxation distribution model 

 , (7) ( , ( )) ( ) ( , ( ))n IJ n IJY C R H Cω ω ω ω ω=

In order to consider constitutive laws obeying the 
principle of causality, Wintle [3] proposes an 
alternative to the calculation of the principal value 
integrals relative to the KK relations, by introducing 
distributions of Debye relaxations 

  (4) 

where  and Y  are the spectra of the 
waveforms r t  and y , respectively. Note that the 
reference signal r t  propagates in water without the 
plate. 
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where  is the relaxation strength and g  is the 
probability distribution of the relaxation time with 
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Thus, by applying the Fourier transform to the time 
derivative of (4), we find  
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   The inverse method is directly inferred from the 
maximum-likelihood principle and the expression of 
ambiguity functions [7]. The writing of the analytic 
formulation of signals, suited especially to the 
assessment of difference between signals, is implicitly 
used in the following. The inverse problem consists of 
seeking the optimal parameters C  corresponding to 
the best matching between the experimental and 
predicted, by using Eq. (7), waveforms. The 
maximum likelihood between two signals is reached 
when these signals have the same energy and when 
their interaction (defined by the modulus of the scalar 
product between these signals) is maximum. The 
signal interaction energy  between the 
experimental  and predicted y t  signals, 
and the experimental signal energy ε  are defined, 
respectively, as [6, 8] 
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(8) Finally, by a judicious choice of the probability 
density functions, the system (6) can be evaluated 
analytically. We can then obtain expressions for the 
stiffnesses , which ensure linear or quadratic 
asymptotic frequency-dependences [4]. 

IJC with ( ) ( ) ( )exp
n R Yχ ω ω ω=
.| |

n . In Eq. (8), the  
symbols  and .

ω

 stand for the modulus and the 
conjugate of a complex value, respectively. The 
angular frequency domain D  represents the set of 
positive components of sampled analytic signals. 
However, without changing the significance of the 
energetic quantities (8), the range D  can be reduced 
to few frequency components around a given angular 
frequency. This process leads one to apply a sliding 
rectangular window to the signal spectra. 

ω

 
Direct and inverse problems: recalls 
The direct problem is based on the plate transmission 
coefficient for a plane wave, Fig. 1. The used 
formulation rests on the works from Deschamps and 
Hosten [5], generalized analytically for the case of any 
material symmetry [6]. 
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   Concerning the solving procedure, the maximum-
likelihood corresponds to the minimum of an 
objective function. Let N  be the number of recorded 
experimental signals. We define the objective  
function  by 
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The global minimum of this function is zero and is 
reached when the sets of experimental and predicted 
waveforms are similar. Finally the optimal parameters 
( )optIJC  are defined such as 

Figure 1: Plane-wave transmitted field through a solid 
plate immersed in a fluid;  defines the propagation 
plane (azimuthal angle) and θ  the incidence angle. 
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IJ IJC
C = C . (10) Table 1: Viscoelastic properties of the composite 

material used for simulation at a fixed angular 
frequency . The frequency variation used for 
simulation are different for each stiffness constant. 

*ω 
Parameterization choice: the "local" formalism 
Due to the frequency dependence of the optimal 
stiffnesses ( )optIJC , it is necessary to define a procedure 
allowing one to identify the material viscoelastic 
response. 

( , )1 3 plane 11C  33C  13C  55C  
*(

IJ
C ω′ )  (GPa) 12 136 5.4 6,2 

*(
IJ
C ω′′ )  (GPa) 0.65 1.1 0.23 0.22    The rheologic models commonly used for ultrasonic 

frequencies have the form   
Inversion process validation 

 . (11) ( )* *( ) ( ) i / ( )
p

IJ IJ IJC C Cω ω ω ω′ ′= + *ω′    The sensitivity of the optimization technique to the 
frequency variations of the both real and imaginary 
parts of the stiffnesses is examined and quantified in 
this section. Signals propagating in physically realistic 
dispersive orthotropic materials are simulated for 
various directions in an principal plane, by using 
stiffnesses which satisfy the frequency-dependent 
model (6), and of which values at (ω ) 2 MHz are 
reported in table 1. Observe that, due to the material 
symmetry, only the four complex-valued stiffnesses 
summarized in this table affect the wave propagation. 
The material density is around 1560 kg/m3. 

* =

where  is equal to 0, 1 or 2 [5]. Over the entire 
frequency range, the parameters C  are 
independent of the frequency, while the imaginary 
parts of 

IJ
C  are assumed to vary with the 

frequency as a fixed th-degree polynomial. The aim 
of this approach is to identify the parameters IJC  
and IJ  of the chosen model (11). As already 
mentioned, all the functions C  (11) have the 
same frequency dependence. However the energy loss 
mechanisms –related to the stiffness imaginary parts– 
may differ with the mechanical excitation, by example 
with the ultrasonic wave nature. This justifies the 
introduction of a local formalism which allows 

 frequency-dependences to be independent 
from each other. 

p
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   A local parameterization of the stiffness variations 
with the frequency is then proposed by approximating 
the functions C  around a given angular 
frequency  by its 1st order Taylor expansion  
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Thus, the local variations of C  around  can be 
described by the following four real-valued 
parameters  
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Therefore, this local description allows one to make 
no assumption on the dependences of the stiffnesses 
over the entire frequency range.  
   Thus, instead of considering at the same time all the 
frequency components, the local approach considers 
each frequency component independently from each 
other. The aim being to characterize the viscoelastic 
properties of materials over the entire frequency 
range, identification of the stiffnesses is performed 
then at each frequency of the above mentioned range 

. Observe that the split of the domain D  into 
narrow bands allows the analysis of the frequency 
coherence between the sets of experimental and 
predicted signal. 

Dω ω Figure 2: Real parts (in GPa) of all the stiffnesses as a 
function of the frequency. The dashed and solid lines 

correspond to the simulated and recovered 
dependences, respectively. 
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The simulated frequency dependences for the both 
real and imaginary parts of the stiffnesses, are 
represented by dashed lines in Figs. 2 and 3, 
respectively. All these frequency variations have been 
deliberately chosen different from each other. Finally, 
the “local” method is applied to a set of “causal” 
synthetic waveforms which have been generated from 
the chosen stiffness tensor ( )( )C ω

IJ
. The “local” 

identification is then performed by using a sliding 
narrow frequency-band reduced to five frequency 
components. In addition, comparison with the 
“global” formalism is carried out by considering the 
non-causal rheologic model (11). The imaginary 
stiffnesses are assumed to be frequency independent 

 or even linear-frequency dependent ( ) . 
The results for the “local” and “global” identifications 
of the frequency-dependent stiffnesses are displayed 
Figs. 2 and 3, by bold and solid lines, respectively. 

0(p = ) 1p =

   Concerning the reconstruction obtained by the 
“global” method, the variations of the imaginary parts 
are never properly identified (except for the variable 

, when ). As for the determination of the 
real parts, the relative errors remain lower than 4%. 
However the dispersion is not exactly characterized. 
Thus, in the case of complex viscoelastic behaviors, 
the “local” approach is more appropriate. 
 

11C ′′ 1p =

Conclusion  
   The set of performed simulations confirms the 
advantage of the “local” identification technique, 
which allows one the reconstruction of material 
constitutive laws without making any assumption 
about their frequency-dependence. However, the 
efficiency of this approach remains closely related to 
the match between the experimental conditions and 
the modeling assumptions. Noise in signals or 
disregard of plane wave condition indeed significantly 
affect the identification process. 

   Except some numerical instabilities on the 
imaginary stiffness C  at low frequency, Figs. 2 
and 3 show an excellent coincidence between the 
simulated material properties and those identified by 
the “local” method.  

55′′
   In addition, one may wonder about the modeling of 
heterogeneous materials, such as unidirectional fiber-
reinforced composites, by equivalent homogeneous 
media. As suggested by the continuous medium 
description, have the properties of shear waves 
propagating along the fiber direction, to be identical to 
those of shear waves propagating normally to the 
fibers? 
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