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Abstract

In this paper, we are interested in the determination of
the modal dispersion curves that describe the
propagation of sound in a shallow water waveguide
like the ocean. We shortly describe the inversion
method and show how we can reduce the influence of
the noise on experimental or simulated data, using a
holographic array processing technique from an array
of receivers. Then we show how the inversion method
can be used to obtain the modal dispersion curves.

Introduction

Wave propagation in a shallow water oceanic
environment is usually considered in the general
frame of acoustic waveguides. The determination of
the waveguide properties without any a priori
knowledge of the environment is well-known to be a
difficult task. More particularly, the measurement of
the waveguide wavenumbers from a synthetic aperture
array usually requires high-resolution algorithm. In
the recent past, various algorithms have been
proposed to determine the wave numbers from
experimental or simulated data, like the Prony
algorithm [1] or the matrix pencil method [2].
Recently, we proposed and evaluated an alternate
wave number inversion method that proved its
efficacy in terms of accuracy and computation time
[3]. In this work, we use our algorithm to calculate
from time-domain simulated data the dispersion
curves that describe modal propagation in the
waveguide. To this goal, we consider a towed source
that transmits regularly a pulsed signal received after
propagation through the waveguide on an array of
receivers. From the received transient signals, we
calculate the wavenumbers for all frequencies inside
the bandwidth of the source-receiver system. This
procedure provides the modal dispersion curves
corresponding to the different modes in the waveguide
in the considered bandwidth.

Another important parameter of the problem is the
influence of the noise level on the determination of
the wavenumbers. We numerically investigate the
robustness of the inversion algorithm as a function of
the signal-to-noise ratio. We finally combine our
inversion technique with a noise reduction method
based on holographic array processing [4].
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Basic principles

In underwater acoustics, the pressure field P, at a

frequency f =2/m is decomposed under the
propagating modes as follows:
M
Pw(R) = Z a, exp(ika) , (1)

m=1

where M is the number of modes, R is the source-re-
ceiver range, and k,, is the wavenumber associated to
mode m. For simplicity, we neglect the attenuation in
the waveguide.

Like in many high-resolution techniques, the data are
issued from a towed source providing a horizontal
synthetic aperture; for the n™ position of the source
given by R=Rytnd, we measure the corresponding
pressure Pw[n] received on the receiver.

Replacing R in (1) by its expression, we obtain an
equivalent formulation of (1) as

M
P[n]=Y G,z , with z, =explik,d). )
m=1

In this equation, we have M unknown amplitudes a,,

and M unknown phases z,. Consequently, we need at
least 2M data points in order to solve this system.
Using 2M data points, the problem can be seen as the
inversion of the following 2M-equation system:

RfO] =G +a,++a,

Pw[l] =az taz, ttay,z,

o~ M-y~ M- ~ M- 3)
Pw[M _1] =az tayz, te-tayzy

_ o~ OM-1 4~ _2M-1 ~ M-l
Pw[ZM —l] =az,"  ta,z;"  t+--tayzy,

The system described by (3) is linear with respect to
a,, but it is highly nonlinear with respect to z,,. This

nonlinearity makes the inversion difficult and highly
sensitive to noise.

Several high-resolution techniques can be used to
invert for the phases z,, (matrix-pencil methods, Prony
algorithm). We propose an approach that is similar to
the Prony method. Our algorithm is based on the
following steps:

- we start from the first M equations of (3), and write
the @, as a function of the data P, [n] and phases z,,
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- we continue with the last M equations of (3), in
which the @, are replaced by their expression.

These two steps are symbolic manipulations of (3);
there is no numerical treatment here. Of course, we
obtain a system of M equations with M unknown
phases z,, that is highly nonlinear. Anyway, we can
show that this system is linear with respect to the
Elementary Symmetric Polynomials defined by:

M M

MM
E| :Zzi,Ez :ZZzizj, R I_lzl. .

i=l =l j=itl i=l

4)

After a change of variable from the z, to the E,, the
linear system to be inverted can be written as:

p(M)=pr,(M-1)E -P,(M-2)E, +--(-1)""P,(0)E,,

2}

p,(M+1)=P,(M)E, -P,(M-1)E, +---(-1)""P()E,,

p,(2M -1)=P,(2M -2)E, - P,2M =3)E, +---(-1)""' P,
The next steps of our inversion algorithm are:

- numerical inversion of the last linear system and
computation of the £,

- calculation of the phases z,, as the complex roots of a
degree-M polynomial, whose coefficients are the £,,.
The determination of the E,, results from the inversion
of a linear system; thus there is no particular difficulty
here in the numerical implementation. Then the final
resolution step reduces to the search of the roots of a
polynomial, which can be performed from multiple
and stable numerical algorithms. In fact, the most
complex step was the symbolic manipulations that
were needed to obtain the last formulation given
above.

The holographic array processing

As every nonlinear inversion technique, our approach
is highly sensitive to the signal-to-noise ratio (SNR).
Since ocean experimental data is usually quite noisy,
we must take into account this parameter.

Instead of considering a single receiver, we now use
an array of receivers that cover the whole water depth.
To improve the SNR, we use holographic array
processing that consists in cross-correlating the field
coming from an unknown source to the field coming
from a reference source. The first point of the source
track is chosen here as the reference source. The
cross-correlated fields are then summed over the
vertical aperture. This process results in a coherent
combination of the acoustic field on the array. This
leads to an increase of SNR on the order of
10log;¢(K), where K is the number of elements on the
array. Holographic array processing replaces the data
points Pw[n] by a new variable Hw[n] that can be

decomposed in the same way as (2). As an immediate
consequence, the inversion method described above
remains unchanged.

(v -1,
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Representation of the multi-valued solutions

As described in the two previous sections, our
inversion method (with or without holographic array
processing) yields the numerical determination of the
phase variables z, = exp(ikmd ) Now, the calculation

of the corresponding £, is not straightforward, even in
the case of a well-known distance d. This is due to the
fact that the phase of a complex number is known, up
to a multiple of 272. As an immediate consequence,
the wavenumbers £, are given by

k,d = phase(zm)+2pﬂ,
where p can be any positive or negative integer.
In order to find the exact wavenumbers, we take
advantage of the large number of data points. Indeed,
our inversion algorithm is performed from 2M data
points, and we can choose multiple subsets of 2M
equally points in the total aperture L covered by the
moving source. We finally proceed in the following
manner:
- we choose d and a subset of 2M data points such that
we have (2M-1)d<L, on which we run our inversion
algorithm.
- once the z, are known, we calculate all possible
values of k, inside a reasonable range, taking into
account the multi-valued solutions,
- we restart the last two steps for all possible subsets
of points for a given value of d, and also for different
values of d if possible.
The basic idea of this procedure is to cumulate the
multi-valued wavenumbers obtained from different
subsets of data points, and draw a histogram of all
possible solutions. For an effective solution, all
individual histograms will have a peak at the same &-
position, thus resulting in a cumulative high peak on
the final result. For a non-pertinent solution resulting
from the multi-valuation, it will be spread along the k&
axis from one particular histogram to another one, and
we do not expect to see any peak in this case.
As a matter of fact, a strong peak detection on the
final histogram allows to separate the actual solution
from virtual solutions that result from multi-valuation.

®)

Numerical results

Data are obtained from a numerical simulation in a
60-m deep Pekeris waveguide using the Kraken
normal mode code at a frequency of 200 Hz. The
bottom sound speed, density and attenuation are 2000
m/s, 2000 kg/m’ and 0.1 dB/ A . The source is towed
away from the receiver on a total aperture L=1500 m
with an initial distance to the receiver R;=3000 m; the
depth of the source is 15 m. The water sound speed
and density are 1500 m/s and 1000 kg/m’.

Fig.1 shows a typical cumulative histogram obtained
from our inversion technique with a single receiver in



the absence of noise. The sharp peaks correspond to
the actual modes in the waveguide, in the range [0.55
m"'-0.95 m']. The portion of the histogram between
0.85 and 0.95 m' gives us an estimation of the
average noise level resulting from the multi-valuation
treatment. We then define a threshold with respect to
this average noise level in order to detect the peaks in
the histogram.

In Fig. 1, we clearly identify 11 different peaks that
rise high above the average noise level. These
different peaks correspond to the actual wavenumbers
of the waveguide.

In Fig. 2, random white noise is added on the
simulated data points (SNR=20 dB). Comparing Figs.
1 and 2, we see that the detection of modes is more
difficult in the presence of noise; the average noise
level does not change between the different figures,
but the height of the peaks decreases as noise
increases. Some peaks are no more detected, and the
two highest modes can not be distinguished, as in Fig.
1. If we use a detection based on a threshold compared
to the average noise level, we can expect that some
modes are missed in the case of a highly noisy
propagation in the waveguide.

Cumulative histogram - no noise
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Figure 1: typical cumulative histogram without noise.

Cumulative histogram - random noise, 20 dB SNR
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Figure 2: same as figure 1, with a random white noise,
20 dB SNR.

In order to increase the signal-to-noise ratio and allow
a better detection, we apply the same inversion
procedure using holographic array processing on the
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receiver array. A set of 19 receivers covers the water
depth in the waveguide between 3 m and 57 m; the
distance between two successive receivers is 3 m.

Fig. 3 represents the corresponding cumulative
histogram for a 20-dB SNR. We observe a better peak
detection than in the case of a single receiver. Also,
the two highest peaks can now be distinguished. This
illustrates how holographic array processing takes
advantage of the large number of receivers to increase
the signal-to-noise ratio, and thus to improve the
determination of the wavenumbers in the waveguide.

Cumulative histogram - 20 dB SNR + holographic array processing
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Figure 3: same as figure 2, using 19 receivers.

Variation of the wavenumbers with receiver depth

From the above procedure, we are able to determine
the propagation modes of the waveguide for a
particular depth of the source and receiver. It is
interesting to see how the mode detection varies with
the depth of the receiver, in order to check that the
inversion does not depend on this parameter.

For that purpose, we run the inversion algorithm
separately for each of the 19 receivers in the absence
of noise. In Fig. 4, the detected wavenumbers are
shown for a single receiver between 3 m and 57 m.
The curves reduce to vertical straight lines, and this
effectively confirms that our detected wavenumbers
do not change from one receiver to another. However,
we observe that some wavenumbers are lost for
particular receivers. This occurs when the receiver is
located near a node of a specific mode; consequently
the corresponding mode can not be detected at this
position.

Modal dispersion curves in the ocean

In the previous sections, we considered only mono-
chromatic signals at the frequency of 200 Hz. The
simulated data points have been calculated using a
single-frequency propagation model.

We investigate now the case of broadband signals
received from a horizontal synthetic aperture. To do
so, the previous inversion procedure is repeated for all
the frequencies that are effectively present in the
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temporal signals received on the array. This yields a
series of wavenumbers for each frequency that can be
represented in the (k, f ) space to obtain the modal

dispersion curves of the waveguide. These dispersion
curves are very important because they contain much
information about the physical properties of the
waveguide and bottom.

In practice, the simulated data points are now obtained
from a transient propagation model based on the
Kraken normal mode code. The central frequency is
200 Hz, and the effective bandwidth is in the range
[175-225 Hz]. The computation of the dispersion
curves has been limited to this frequency range. The
length of the horizontal aperture L=1500 m is the
same as before.

The complete procedure is now the following:

- for a given frequency f, we calculate a discrete
Fourier transform of the time-domain received signals
for every point of the horizontal synthetic aperture,

- then we run the inversion procedure as described in
the previous section; the cumulative histogram is
replaced by a mode detection, using a threshold
defined by the average noise level calculated from the
up-front portion of the histogram.

Figs. 5a and 5b show the modal dispersion curves
obtained in the absence of noise and in the case of a
20-dB SNR, respectively. On these two figures, we
see the classical structure of the dispersion curves in
the waveguide, and the degradation due to the
presence of noise.

Conclusion

In this work, we have presented a numerical procedure
to calculate the propagating wavenumbers in a
waveguide, and the resulting dispersion curves. These
results may be useful in underwater acoustics, since
dispersion curves contain information about the
waveguide properties.

Modes vs. receiver depth
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Figure 4: variation of the modes with receiver depth.
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Modal dispersion curves - no noise
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Figure 5a: dispersion curves without noise.

Modal dispersion curves - random noise, 20 dB SNR
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Figure 5b: dispersion curves with a 20-dB SNR.
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