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Abstract 

The purpose of the lecture is to highlight new 
physical effects and prospects for NDE-applications 
of nonlinear acoustics of bounded and imperfect solids 
that have been developed over the last decade. 
“Classical” line of investigations is concerned with 
boundary nonlinearity of ideally bonded interfaces 
including nonlinear sound reflection, nonlinear 
propagation of various types of surface and interface 
waves. The features of acoustic nonlinearity for such 
an interface are concerned with coupling of elastic 
modes that results in harmonic generation in a linear 
solid or, on the contrary, linearisation of an interface 
between nonlinear solids. A new class of nonlinear 
phenomena is associated with nonlinear dynamics of 
non-bonded interfaces and accompanied by gigantic 
increase in contact nonlinearity due to nonlinear 
friction and clapping mechanisms. "Non-classical" 
nonlinear phenomena include subharmonic 
generation, instability, hysteresis, self-modulation, 
dynamic chaos caused by nonlinear and parametric 
resonances of the contact oscillations. A number of 
case studies considered demonstrate a high potential 
of acoustic wave interaction with nonlinear interfaces 
for damage detection, location, and characterisation. 
 
Introduction 

 A gradual pace of a 30-year history of nonlinear 
acoustics of solids has been disturbed by a dramatic 
turn over the last decade. In early 60s, a classical field 
of investigations was aimed at homogeneous 
(flawless) crystals whose nonlinearity was associated 
with lattice anharmonicity. As a result, a unique 
means was created for experimental characterisation 
of nonlinear behaviour of inter-atomic forces in 
crystalline materials [1]. However, even in the first 
experimental studies a substantial increase in 
nonlinearity was measured as soon as dislocation 
pattern was induced in a single crystal of Al by a 
mechanical impact [2]. Further investigations 
confirmed an important role of internal boundaries in 
acoustic nonlinearity enhancement for dislocations in 
fatigued materials [3] and matrix-precipitate interfaces 
in alloys [4].  

A number of studies were implemented then to 
find out mechanisms of the boundary nonlinearity 
using surface acoustic waves (SAW) and interface 
waves [5-8]. These results were supplemented by 
direct observations of efficient higher harmonic (HH) 
generation  in  bulk  acoustic  wave  reflection  from  a  

 
(bonded) interface between two nonlinear solids [9]. 
In both cases, the experiments revealed a drastic 
increase in boundary nonlinearity if a non-bonded 
contact  (two plane surfaces pressed together) was 
arranged on the path of SAW propagation [5] and in 
the area of the bulk wave reflection [10]. Besides the 
much higher efficiency, such a contact acoustic 
nonlinearity (CAN) was shown to be accompanied by 
substantial qualitative deviations from classical 
(lattice) nonlinearity (threshold behaviour, 
unconventional waveform distortion, fractional 
subharmonic generation, “self-modulation”, 
instability, chaotic dynamics, etc.) [11-13]. Since such 
an interface simulates closely an elastic behaviour of a 
crack, nonlinear acoustics of non-bonded interface 
became a topical subject of numerous studies and 
applications concerned with non-destructive 
evaluation (NDE) of cracked defects. 

Another area where the deviations from the 
classics of nonlinear acoustics were found to be 
evident was acoustics of rocks [14]. A grainy structure 
of rocks, apparently, comprises a number of non-
ideally bonded interfaces whose nonlinear response 
dominates in an overall nonlinearity of geomaterials. 
Different types of contact bonds in the interfaces 
between grains result in various mechanisms of 
structural nonlinearity [15] that are involved in 
interpreting of non-classical manifestations of acoustic 
nonlinearity in rocks. These mechanisms are 
complemented by the Preisach-Mayergoyz (P-M) 
formalism to include hysteresis of elastic properties of 
rocks [16]. The P-M scheme enables a 
phenomenological description of such non-classical 
manifestations like elastic hysteresis and discrete 
memory observed in static and dynamic experiments 
as well unconventional features (quadratic (linear) 
dynamic characteristics for the HHs (resonance 
frequency shift)) of acoustic wave nonlinear 
propagation in rocks.  

Interestingly, that both of the above approaches 
though originated from quite different areas (nonlinear 
acoustics of interfaces and acoustics of rocks) have 
ultimately come to the similar non-classical 
developments and a common conclusion that these 
new nonlinear interface phenomena may become a 
novel versatile tool (much more practically oriented 
than its classical predecessor) for acoustic NDE of 
materials. 

The latter fact will be emphasized in this paper: the 
new physical effects will be considered through the 
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reflected incidentprism of NDE applications. To place this in historical 
context, Section 1 will be concerned with ideally 
bonded nonlinear media where some new properties 
of the acoustic nonlinearity within surface and 
interface areas will be shown for nonlinear sound 
reflection and propagation of boundary acoustic 
waves. Phenomenology and experimental results on  
non-classical nonlinear phenomena for non-bonded 
interfaces are presented in Sections 2 and 3. The case 
studies of acoustic NDE applications based on the 
non-classical nonlinear interface phenomena are 
collected in Section 4. 

Figure 2: Mode conversion in linear (left) and 
nonlinear (right) sound reflection. 

 
near-interface located sources produced by the self- 
and cross-interactions of the linear transmitted L- and 
S-waves in medium II.  

 
1. Acoustic nonlinearity of an ideally bonded 

interface According to (1), elastic coupling makes all modes  
at the interface nonlinear; the nonlinearity of each 

mode ( u ) is determined by the cumulative 
contribution ( ) of all linear modes that can 

increase greatly the interface nonlinearity. Due to the 
elastic coupling, even acoustic waves in the adjacent 
linear medium acquire nonlinearity. A general 
solution to (1) in the linear medium can be written as 
follows [17]: 

γ
α

βN

 
Nonlinear sound reflection 
   Consider reflection of vertically polarized shear (S-) 
acoustic wave of frequency ω  from an interface 
between linear (I) and nonlinear (II) isotropic solids. 
In the first approximation, the incident wave (from 
medium I) is accompanied by the mode conversion 
which results in reflected and transmitted longitudinal 
(L-) and S-waves.  
   In the second approximation, the 2ω -waves are 
produced due to nonlinearity of medium II. The 
second harmonic field (Fig. 1) comprises four freely 
propagating L- and S- 2ω -waves in both media 

whose amplitudes  are determined from the 
second-order boundary conditions of continuity of 
displacement and generalized stress that can be 
written in the following general form [7]:  

γ
αu

2
0uku I

S
γ
α

γ
α β= ,                             (2) 

where  is the wave number, u  is the amplitude of 

the fundamental wave and  are the nonlinearity 
parameters of the interface. It shows that for reflected 
waves no accumulation of nonlinearity takes place and 
the interface acts as a localized nonlinear source.  

I
Sk 0

γ
αβ

     Calculations from (2) also demonstrate a high rise 

in  (from γ
αβ 10≈  up to ) for the reflected 

second harmonics at the angles of incidence beyond 
critical values. This increases abruptly the efficiency 
of the HH generation: as much as 10%  of 30 MHz 
incident wave of moderate intensity ~10 W/cm

310≈

2 can 
be reflected as its second harmonic. 

β
γ
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γ
αβ Nua =∑

,
,                          (1) 

where SL,=α ; III ,=γ ; ;41−=β  

Due to the phase matching the matrix a  in (1) is 

identical to that of the linear solution.  The nonlinear 
2

III ,
αβ

ω -terms in the right-hand  side  ( )  combine  the  βN Another interesting feature is concerned with 
nonlinear mode conversion at the interface. For 
normal incidence of S-wave (Fig. 2 (right)), the 
second harmonic field comprises reflected and 
transmitted L-waves only, while no mode conversion 
takes place in the linear S-wave reflection (Fig. 2 
(left)). If the media across the interface are 
acoustically matched the reflected second harmonic in 
Fig. 2 exists even in the lack of linear reflection. This 
demonstrates a unique opportunity for detection of 
nonlinear interfaces (cracks) “invisible” with 
conventional (linear) acoustic instruments. 
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Nonlinear interface waves  

Wave propagation along the interface can be 
represented as a superposition of reflected and 
transmitted waves (at complex angles) existing 

Figure 1: The second harmonic field in SV-wave 
reflection from nonlinear medium (II). 

WCU 2003, Paris, september 7-10, 2003

556



without the incident wave. In the second 
approximation, such an approach enables to outline 
new features of nonlinear waves caused by the 
specificity of interface nonlinearity  [18].  

Consider a plane interface between two nonlinear 
solids assuming their linear elastic properties are close 
enough to support the interface wave (Stoneley wave 
(SW)) propagation. System (1) can be adopted to this 
case by including all cross- and self-interactions of L- 
and S-waves in both media into the right-hand side 
terms . In isotropic media, the L-L interactions 

(only) are resonant and provide a spatial growth of all 

(partial) solutions u  in (1). The sum of these partial 
waves from (1) constitutes the SW second harmonic: 

βN

γ
α

)]2(exp[)2(22 kxtiSLUU −= ωωγγ
ω

γ
ω

rr
 ,        (3) 

r
where )2( ωγS  are the complex vectors that describe 
SW displacement field normalized to the amplitudes 

of L-partial 2ω -wave  in the γ -th medium U :  γ
ω2L

2)4/2(2
γ

ω
γβωγ

ω LUSxLU =     .               (4) 

The coupled mechanism of the interface wave 
nonlinearity is manifested in generation of growing 
HHs of all partial waves due to elastic coupling 
through the interface that provides nonlinear distortion 
of the waveform shown in Fig. 3. 

The SW nonlinearity parameters in (4) have the 
form [7]: 

Sl
IIII

S βββ += ;     ;   (5) Sl
IIIII

S /βββ +=

where l  is the elastic coupling factor.  I
LUII

LUS ωω /=

Thus, the nonlinearity of each medium in contact 

comprises the proper material nonlinearity ( ) 
and the one induced by the adjacent medium.  

III ,β

Therefore, the boundary nonlinearity of a 
particular material can be increased substantially by 

joining it to another material provided all and γβ Sl  

are of the same sign. From (5), even a linear material 
can be made nonlinear by the interface coupling. On 
the contrary, an interface between nonlinear materials 

turns linear if Sl
III −=ββ /  .

εσ )((1[II HC −=

 

/)/( 0dd >− εεσ

0)( εε −t
0ε

)/)(0 IICC∆− ε

The coupling nature is a general feature of the 
interface nonlinearity that manifests in nonlinear 
propagation of various types of boundary waves 
(Stoneley-Scholte, Gulyaev-Bleustein, SAW) [19].  
 
2. Acoustic nonlinear phenomena at a non-

bonded interface (phenomenology) 
Consider a plane interface between two solids 

whose flat surfaces are in close proximity (open 
contact) or even touching each other (closed contact). 
We ignore the surface roughness as well as adhesive 
bonding forces between surfaces and assume that such 
a non-bonded interface can be supported by an 
external static compressive force. 
  
“Clapping” mechanism of CAN  (normal traction) 

An alternating load applied normally to the 
interface will find a non-bonded contact stiffness to be 
asymmetrical:   the stiffness for compression is higher 
than that for tensile stress. Such a “bi-modular” 
contact can be approximated by the piece-wise stress-
strain relation [20] (Fig. 4)): 

ε)]/ IICC∆ ,            (6) 

where )(εH

1[II =

is the Heaviside unit step function; 

is the stiffness 
modulation depth that, generally, can be as high as ~1 
(against ~10

]/ IICCC∆

-4 in classics). 

For , where ε = tt 0cos0)( νεε =

)(tC∆=

0/2

 is the 

input signal and is  the  static  contact  strain, the 
stiffness variation from (6) 

 is a pulse 
modulation type function of period 

0tνcos0(H ε
νπ=T  (Fig. 

Figure 4: Stress-strain relation and CAN
spectrum formation. 

Figure 3: Distortion of acoustic wave form at 
nonlinear interface. 
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4). The spectrum of the nonlinear part in (6): 

 can be easily found using 
the modulation theorem and the amplitude of the n-th 
harmonic (n = 0, 1, 2, 3...) then takes the form:  

]0)()[(~)( εεσ −∆ ttCtNL

0τε∆∆= CAn

T/ττ =∆ /(T=

0εε >

0ε
2/T

=τ

1εε <

               
[sinc((n+1)∆τ) − 2cos(π∆τ)sinc(n∆τ) 

+sinc((n-1)∆τ)] ,                                                        (7) 

where  (τ  is the 
normalized modulation pulse length.  

)0/0cos() εεπ Arc

The spectrum of nonlinear oscillations (7) is 
also shown in Fig. 4 and contains a number of the 
HHs (both odd and even) arising simultaneously as 

soon as (CAN threshold). The harmonic 
amplitudes are always modulated by the sinc 
 envelope function. Its argument depends on τ : as the 
wave amplitude  increases, τ  grows from 0 to 

 accompanied by corresponding “compression” 
of the envelope function (Fig. 4). As a result, the CAN 
HH-amplitudes as functions of 0ε , first, increase 
monotonically beyond the threshold; then the 
spectrum “compression” effect causes the amplitude 

oscillations, unless finally ( ) it suppresses 
all odd harmonics (since 

0ε0ε
2/T
>>
) [20].  

In conclusion we note, that the diode-type CAN 
also results in nonlinear rectification of the input 
signal (Fig. 4) that causes the DC-effects (static stress 
and strain) to appear at the non-bonded interface [21]. 
 
Mechanism of nonlinear friction (tangential traction) 

Assume now that the surfaces in contact are rough       
and, therefore,  friction   coupled    for   a    tangential  
harmonic load applied. The stress-strain relation 
becomes nonlinear and hysteretic (Fig. 5): the slanted  
parts correspond to a joint linear vibration of the 
interface for  (static friction). 1εε <  (static 
friction). Above  this threshold, the kinetic friction 
force is too small to retain the linearity that initiates 
sliding and the onset of nonlinearity. The contact 
stiffness  also changes in a "pulse mode" (Fig. 5) 

twice over the input strain period between (for a 
„stick“ phase) and zero („slide“ phase) [22]: 

)(tC

sC

]]1)([)(1)[2/()(
..

εεεε signsignsignCtC S +−=       (8) 

Similar to the above,  and the 
nonlinear spectrum is also sinc-modulated. However, 
since  is a 

)()(~)( ttCtNL εσ

)(tC 02ν -function its spectrum consists of 
even harmonics 2 0νn , while the output spectrum 
contains odd harmonics 0)12( ν+n only. 

Impact of bonding forces (normal traction) 
The analysis of “clapping” mechanism has been  

concerned with virtually non-bonded interface and 
does not include the hysteresis phenomena observed 
for realistic interfaces (cracks, grains in rocks, etc). To 
include the hysteresis into dynamics of the interface 
for normal traction the impact of bonding forces 
between the surfaces in contact can be considered. 

In fact, such a hysteresis is inherent in contact 
mechanical phenomena in solids and modifies the 
well-known Hertzian interaction [23]. The attractive 
adhesive force “sticks” two surfaces prior to any 
compressive load is applied to the contact while an 
extra tensile stress is needed to detach the surfaces  
upon unloading. For rough non-conforming surfaces, 
such an effect results in the hysteretic interfacial 
stiffness modulation [24]. Since the stiffness changes 
twice over the loading period the output nonlinear 
vibration spectrum, similar to the above, comprises 
odd HHs only. The adhesive force model [24] is 
applicable to the interface between soft materials (or 
soft bonding layers) and can be considered as a good 
candidate for providing a micro-mechanical 
mechanism of the P-M units in rocks. 

Another approach to taking into account the 
hysteresis is based on the model of bistable interface 
(Fig. 6) [25]. The equilibrium position  of the open 
interface (width ) is supported by macro-scale 
elasticity forces between the asperities and stress 
distribution around the interface. The equilibrium 
distance for the closed interface ( ) is due to inter-
atomic interaction.  As soon as the clapping starts 
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Figure 6: Qualitative model of bonding force  
for a bistable interface [25]. 

Figure 5: Stress-strain and stiffness variation
for tangential traction 
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from the original open position ,  the average 
contact width reduces by a jump due to “attraction” by 
a strong equilibrium position  ( F ). The 
latter is the reason for the hysteresis: a return to open 
position takes place at a smaller excitation amplitude.  

0y

)xt

cy

mν

K

0Fc >>

0=

mνω /2=

A striking similarity between the hysteretic 
bistability effects for the non-bonded interface and 
those observed for a point contact in atomic force 
microscopy [26] shows that the nonlinear acoustics of 
the non-bonded interface can also be a tool for the 
study of inter-molecular forces in the contact area. 

 
Nonlinear and parametric resonance CAN 
phenomena 

The higher harmonic generation is not the only 
possible scenario of nonlinear dynamics of cracked 
defects. The CAN driven defect itself (or a sample 
with the CAN-defect) can be considered as a 
nonlinear oscillator. The contact stiffness variation 
results in a temporal modulation of the oscillator 
resonance frequencies (parametric modulation) 
described by the well-known Hill´s and Mathieu´s 
equations: 

cos1(2..
++ mx ω .            (9)                       

Parametric instabilities and the subharmonics of ½- 
order described by Eq. (9) are particular cases of a 
more general phenomenon of the nonlinear resonance 
[29]. The latter comprises a “bend” of the frequency  
response curve that causes the amplitude “jumps” 
(threshold instability) as the driving signal frequency 
(or amplitude) varies. Such “switching” in a two-level 
oscillating system is accompanied by both frequency 
and amplitude  hysteresis (bistability). If the driving 
frequency for a nonlinear oscillator (of eigen 
frequency ω ) is ν , then the nonlinear resonance can 
also take place if ωων =± nm  and the relation 
between the input (ν ) and the output ( ) frequencies 
of the oscillator becomes: ω /( p=  ( =p 1, 2, 
..). Both super- ( 1;1 >= pq ) and subharmonic 
( 1;1 >= qp ) resonances are possible that may result 
in dramatic increase of the HHs and subharmonics (of 
the p/q-order).  

Solutions to (9) manifest instability phenomena 
observed for integer values of , where 

mν  is the modulation frequency. The output 
frequency of the parametric oscillator is [27]: 

2/)2( mnKout νω +=  and vary from the sum of 
subharmonics (K  is odd) to multiple higher 
harmonics ( K  is even). The main (strongest) 
parametric resonance corresponds to K =1 
(remember a swing) and results in a series of 
subharmonics of order 1/2. Dynamic characteristics 
of parametric oscillations feature a must threshold of 
the input to compensate the system energy losses 
followed by an amplitude ”jump” (instability) right 
beyond the threshold.  

As the modulation amplitude increases, the 
resonance values of K  deviate from the integer 
multiples and the parametric resonance can be 
observed in wide frequency bands. Another factor, 
which expands greatly the frequency band where the 
above effects can be observed is concerned with a 
multiple resonance structure of oscillations. 
Therefore, e.g. K =1 may correspond to nm ων 2= , 
where ωω nn =  is the n-th resonance frequency . At 
low values of ω , K =1 may be held for almost 
continuous variation of the input frequency. 

The friction driven CAN displays symmetric 
stiffness vs. strain distribution (Fig. 5) thus providing 

02νν =m . As a result, both odd and even parametric 
resonances produce only higher harmonics. For 

”clapping” CAN, the stiffness versus strain is an 
asymmetric (step-like) function and 0νν =m . Thus, 
one may expect multiple subharmonic generation as a 
result of acoustic wave interaction with “clapping” 
defects (cracks, delaminations, debonds, etc.). 

1 n=Ω

∆

1Ω

±)2/)( mν
∆

ω
ν)q q,

The subharmonic generation can be modified if 
one assumes a multi-mode structure of sample (or 
defect) oscillations (e.g. two eigen-frequencies 1ω  
and 2ω ). In this case [28], the main parametric 
resonance can result in simultaneous parametric 
excitation of a pair of resonance modes 1ω  and 

22 ωm=Ω  if the subharmonic of the modulation 
frequency lies in the middle between them: 

;)2/1 ( ∆−=Ω mν  .)2/(2 +=Ω mν . Successive 
nonlinear interaction between mν , , and 2Ω -
components results in a line spectrum with side-lobes 
around the subharmonics ∆+12( n  and 
near the higher harmonics ± 2mnν . The presence 
of the side-lobes is an indication of amplitude 
modulation (parametric "self-modulation"). 

Instabilities for the fractional subharmonics and 
"self-modulation" (spectral side-lobes) develop 
successively as the driving amplitude increases. Such 
a spectrum expansion eventually will bring the system 
into chaotic instability with a noise-like vibration 
pattern. 

  
3. Non-classical acoustic nonlinear phenomena at 

a non-bonded interface (experiments) 
To demonstrate pertinence of the above 

phenomenology to the non-bonded CAN phenomena 
the two sets of experiments will be described. The 
simulation experiments used an interface between two  
metal or glass samples with polished (for normal 
traction) or rough (for friction coupling) surfaces 
pressed  together.  An  accelerometer or Polytech laser  
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Figure 7: Spectrum and vibration form (insert)  
for “clapping” interface (20kHz- drive). 

 
vibrometer were used to detect temporal forms and 
spectra of the interface acoustic vibrations.  The 
results in Fig. 7 clearly demonstrate the “rectified” 
output and even higher harmonic prevalence predicted 
above for the “clapping” CAN spectrum. 

As expected, the friction coupled interface, on the 
contrary, shows the odd HH-domination (Fig. 8). 

Figure 9: Frequency hysteresis (top) and
bistability (bottom) for CAN nonlinear
resonance. 
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Figure 8: Spectrum of vibrations for friction 
coupled interface (350Hz-drive). 

 
 

Figure 10: Threshold and bistability
for 2/3ω  subharmonic in SAW-crack
interaction. 

A linear frequency response of the simulated non-
bonded contact for the normal traction drive displayed 
several peaks in the range of 750-1000 Hz with the 
main resonance at 800 ≅ Hz . As the driving 
amplitude increases, the nonlinear resonance reveals  
a step-like rise of the output and in the HH-generation 
(Fig. 9). The threshold amplitude “jumps”, frequency 
hysteresis and bistability (Fig. 9) correspond to 
nonlinear resonance “softening” of the contact.  

to units of MHz as the input voltage increases. Beyond 
the threshold, the amplitude modulation turns into 
chaotic beats until finally a temporal instability is 
fully developed and both sub- and super-harmonics 
change into a noise-like acoustic waves [13]. 

Note, that similar effects of  the threshold and 
hysteretic behaviour of the HHs and subharmonics 
have been reported recently also in transmission of  
bulk acoustic waves in glass sample with cracks   [25].    

To find out whether propagating acoustic waves 
can accommodate a diversity of resonance nonlinear 
oscillation effects described above we studied SAW 
(frequency range 15 – 45 MHz) interaction with 
realistic cracks in YZ-LiNbO3 . As the amplitude of an 
acoustic wave incident on the crack increased, a 
number of super- ( ω2  and ω3 ) and  subharmonic  
( 2/ω , 2/3ω , 3/ω , 32 /ω ) waves were observed in 
the reflected acoustic field. Their threshold and 
bistable behaviour (Fig. 10) clearly indicate 
involvement of nonlinear resonance phenomenon. 
Above the threshold ( VINV 5.1≈ ), the sub- and 
higher harmonics are found to be amplitude 
modulated  (“self-modulation”  effect)  (Fig. 11).  The  Figure  11: „Self-modulation“ effect for 2/3ω  

subharmonic in SAW-crack interaction. modulation frequency changes  from  hundreds of kHz 
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4. Case studies of non-classical nonlinear NDE of 
solid interfaces 

 
Experimental features 

An overall driving frequency range studied extends 
from 300 Hz to 45 MHz.. Excitation of low-frequency 
vibrations (below 20 kHz) was implemented with an 
electrodynamic shaker (input voltage V1510 −≈ ); 
accelerometer (or optical interferometer) used for 
detection of vibrations followed by FFT or analogue 
spectrum analysis. To produce 20 kHz intense 
vibrations, an ultrasound welding piezoelectric stack 
transducer was driven with a CW electric signal of 
max power ~ 300W. A scanning laser vibrometer used 
to detect and image out-of-plane nonlinear excitations. 
After FFT of the signal detected, the C-scans of 
sample area are obtained at any spectral line within 
the frequency bandwidth of 1 MHz. High frequency 
nonlinear NDE (15-45 MHz-range) employed SAWs 
generated and detected with interdigital transducers. 

Figure 13. Chaotic mode of nonlinear reflection
NDE: noise-like pulse (top) reflected from the
surface crack (bottom, right) in LiNbO3 crystal.
Electrodes of the SAW transducer (bottom, left)
are of 50 µm wide. 

 
Nonlinear reflection mode  

It was shown above that the interface areas 
(including cracks, delaminations, debondings, etc.) are 
strong nonlinear inhonogeneties for a probing acoustic 
wave: high local CAN is a source of backward 
(“reflected”) nonlinear excitations even when linear 
reflection is negligible. This enables detection of 
small fractured defect “invisible” with linear acoustic 
NDE and makes the nonlinear  reflection defect 
selective (only nonlinear defects are detected). Fig. 12   
illustrates these features of the nonlinear reflection in 

detecting cracked surface defects in LiNbO3 crystal 
[30, 31]. The smallest cracked defect (N2) (almost not 
visible in linear reflection (a)) dominates in nonlinear 
reflection (b, c) while a hollow-type (linear) flaw (N3) 
is ignored.  

A strong nonlinear reflection is also observed 
when a surface crack is irradiated with two surface 
waves of different frequencies (wave mixing on a 
crack). For higher input voltages ( V20≈ ), the 
subharmonics appear in the reflected field followed by 
chaotic noise-like nonlinear reflection from a crack 
(Fig. 13). Figure 13 also shows a small surface crack 
in LiNbO3 detected in such a “chaotic” mode NDE 
and invisible with any other reflection modes. 

N3 3ω 

 
crack 

crack 

2ω 

ω 

N2 

N1 

 
Higher harmonic nonlinear  NDE  

A high level of HHs generated in a sample due to 
CAN is an indicator of damage incurred and can be 
used as a quality assessment test. Moreover, CAN-
driven nonlinear excitation originates in a damaged 
area which, apparently, can be located and imaged in a 
scanning mode.  

Fig. 14 shows the results of acousto-optic HH-
imaging of an oval delamination in a "smart structure"  

   (actuator embedded in GFR-matrix). The HH-images 
selectively    reveal    the    boundary    ring    of    the  
delamination where “clapping” of the contact surfaces  

3ω2ω ω 

Figures 12 a, b, c: Defect selective acoustic
wave nonlinear reflection from surface impact
defects. Left: cracked (NN1-2) and hollow
(N3) defects; Right: linear (a) and higher
harmonic (b, c) reflection.  
 

Figure  14: Linear (50 kHz), second and third
harmonic images of the delamination area in glass
fibre-reinforced (GFR)-composite [32].
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ω−Ω ω

is, apparently, expected. Since the HH are generated 
locally within the “clapping” area one would 
anticipate the source of nonlinearity to be primarily 
seen in the nonlinear vibration pattern. On the 
contrary, the driving frequency (about 50 kHz) image 
indicates a standing wave pattern over the whole area 
of the actuator.  

The factors that contribute to the local contrast of 
the nonlinear images include a high input amplitude, 
acoustic energy trapping inside the defect area and the 
HH-damping which increases for the higher-order 
harmonics. In the latter case, one can also avoid the 
HH-standing wave pattern which distorts the 
nonlinear images. Fig. 15 illustrates the quality 
improvement of nonlinear imaging for the higher-
order HHs: a precise location of the two clapping 
areas within the crack is observed only for n>20. 

An impact of the input signal amplitude is shown 
in Figs. 16 a, b for a 4-ply CFRP- sample (15x20 cm) 
which has an impact in the middle part and a number 
of edge delaminations. The 10th harmonic distribution 
clearly shows the positions of all defects; the number 
of delaminations discerned and the image contrast 
increase substantially for the higher input.  
 
Nonlinear modulation NDE 

By applying a monofrequency excitation it is not 
unlikely that the driving frequency and its HH match 
to a linear resonance of the sample and cause standing 
wave patterns, which smears nonlinear HH-images. 
To avoid this, a frequency “detuning” in the nonlinear 
output can be introduced using the wave modulation 

effect. One of its options is to use the amplitude 
modulation of a high frequency wave (ω ) by low 
frequency (Ω ) vibrations. For this purpose, the HH-
imaging experiment was complemented by low-
frequency vibrations (0.5-5 kHz) of the specimen 
driven with a shaker. The images in Figs. 17 a, b show 
that 1 kHz nonlinear detuning from the driving 
frequency 50 kHz results in a decent image of the 
delamination.  

                a)                                             b) 
Figures 17 a, b: Linear (a) and nonlinear (wave 
modulation) (b) mages of the delamination area: 
a) fundamental spectral line 50 kHz; b) difference 
frequency 49 kHz .

Figure 15: HH-imaging of two clapping areas
in a crack: 9th harmonic image (left); 33th

harmonic image (right). 

The nonlinear wave modulation technique was 
applied for detection of cracking in concrete [33] and 
fatigue crack imaging in a steel plate [34]. A new 
mode of the technique   that   uses   cross-modulation   
between  an intense pump wave and a probe signal has 
been reported recently [35] and applied to crack 
detection in glass. 

Flexibility and application area of the nonlinear 
acoustic modulation technique expands considerably 
by combining the benefits of air-coupled ultrasound 
(remote locating and imaging of defects) with 
sensitivity of nonlinear methods [36]. Low-frequency 
vibrations of an interface of a cracked defect (excited 
with a shaker or a loudspeaker) act like a “shutter” on 
a transmitted high-frequency focused air-coupled 
ultrasonic beam. The latter results in a strong 
amplitude modulation of the transmitted ultrasound by  
the “clapping” crack interface (nonlinear defect) while 
a negligible modulation is observed for large and 
medium scale inclusions and material inhomogeneities 
(linear defects).   Such  a  defect   selective   nonlinear  
NDE  is  shown  in  Figs. 18 a-c  for  a  linear  (drop  
of water) and nonlinear (a crack) defects. As one 
would expect, the linear transmission image clearly 
reproduces both defects with a comparable contrast 

              a)                                              b) 
Figures 16 a, b: 10th harmonic imaging of the impact 
(in the middle part) and edge delaminations in CFRP. 

10 ω 
4% input

    10 ω 
2% input 

c)
b) 

a)

Figures 18 a-c: Air-coupled modulation B-scans of 
linear (left, a) and nonlinear (right) defects: images at 
fundamental frequency 452.7 kHz (a); first side-lobe 
454.4 kHz- (b) side-lobe 451 kHz (c).  
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( ). On the contrary, the side-band  
images exhibit a selective rise in the nonlinear output 
( 2 ) in the crack area only. 

6.0/ −≈∆ VV

/ ≈∆ VV 0
 

Self-modulation  NDE  of defects 
The parametric "self-modulation" discussed above is a 
novel opportunity to implement nonlinear NDE and 
imaging of defects [32]. It is based on parametric 
excitation of coupled resonances in a damaged sample 
that results in side-band lines ("satellites") in 
nonlinear spectrum. Similar to the HH-case, these 
"satellites" are generated locally within the damaged 
area and should, therefore, image selectively the 
source of nonlinearity only. However, unlike all 
modulation versions mentioned above it uses a single 
wave (or vibration) which modulates itself 
parametrically. 

The parametric "self-modulation" discussed above is a 
novel opportunity to implement nonlinear NDE and 
imaging of defects [32]. It is based on parametric 
excitation of coupled resonances in a damaged sample 
that results in side-band lines ("satellites") in 
nonlinear spectrum. Similar to the HH-case, these 
"satellites" are generated locally within the damaged 
area and should, therefore, image selectively the 
source of nonlinearity only. However, unlike all 
modulation versions mentioned above it uses a single 
wave (or vibration) which modulates itself 
parametrically. 

Fig. 19 demonstrates the frequency side-lobes in 
the spectrum of nonlinear vibrations for the sample of 
multi-ply epoxy-based GFR-composite with an 
impact. As the input amplitude increases, the 
spectrum, first, attains HH followed by subharmonics 
growth, and then supplemented by a number of 
frequency “satellites” around all spectral lines of 
vibrations. According to Fig. 19, the self-modulation 
frequency in this experiment was 1.2 kHz. 

Fig. 19 demonstrates the frequency side-lobes in 
the spectrum of nonlinear vibrations for the sample of 
multi-ply epoxy-based GFR-composite with an 
impact. As the input amplitude increases, the 
spectrum, first, attains HH followed by subharmonics 
growth, and then supplemented by a number of 
frequency “satellites” around all spectral lines of 
vibrations. According to Fig. 19, the self-modulation 
frequency in this experiment was 1.2 kHz. ≅≅

The defect-selective nature of  the self-modulation 
imaging is illustrated in Figs. 20 a, b, c for the same 
sample. The linear image taken at the driving 
frequency 20 kHz reveals a developed standing wave 
pattern over the whole sample only (Fig. 20 a). The 4th 
harmonic image of the impacted area (in the centre 

part of the sample) is also corrupted with the standing 
wave influence (b). However, a very clear indication 
of the impact is demonstrated in Fig. 20 c where the 
image was taken at 198.8 kHz, i.e. at the first side-
lobe of the 10th harmonic of the driving frequency. 
Thus, the "self-modulation" is another way to obtain 
detuning and diminish the impact of the standing 
wave pattern in nonlinear acoustic NDE.  

The defect-selective nature of  the self-modulation 
imaging is illustrated in Figs. 20 a, b, c for the same 
sample. The linear image taken at the driving 
frequency 20 kHz reveals a developed standing wave 
pattern over the whole sample only (Fig. 20 a). The 4th 
harmonic image of the impacted area (in the centre 

part of the sample) is also corrupted with the standing 
wave influence (b). However, a very clear indication 
of the impact is demonstrated in Fig. 20 c where the 
image was taken at 198.8 kHz, i.e. at the first side-
lobe of the 10th harmonic of the driving frequency. 
Thus, the "self-modulation" is another way to obtain 
detuning and diminish the impact of the standing 
wave pattern in nonlinear acoustic NDE.  

The height of the maximum in Fig. 20 c exceeds 
20 dB. Vibrometric measurements of the absolute 
values of vibration velocity enable to estimate the 
efficiency of the nonlinear  frequency  transformation:  

The height of the maximum in Fig. 20 c exceeds 
20 dB. Vibrometric measurements of the absolute 
values of vibration velocity enable to estimate the 
efficiency of the nonlinear  frequency  transformation:  
for the fundamental vibration amplitude for the fundamental vibration amplitude ≅ 75 mm/s 
(the crests in Figure 20 a), the peak value for the 10th 
harmonic amplitude was ≅ 750 µm/s and ≅ 600 µm/s 
for the 198.8 kHz-side-lobe in the impact area. It 
shows that the “satellite” generation efficiency is 
comparable to that of the HH. 
 
Subharmonic NDE  

Similar to the self-modulation, the subharmonic 
generation is caused by a local nonlinear resonance in 
the defect area and, therefore, can also be used for the 
defect-selective NDE and imaging. The efficiency of 
the subharmonic generation strongly depends on the 
defect parameters and, normally, is substantially lower 
than that for the HHs. However, our experiments 
show that for loose cracked defects and delaminations 
a sufficient level of the subharmonics can be achieved 
at reasonable input acoustic power.  

Fig. 21 shows the subharmonic images of the oval 
delamination within the "smart structure" in GFR 
plastic. Comparison with the HH-images of Fig. 14 
reveals a higher sensitivity to loose parts (middle area) 
of the delamination. Some remarkable subharmonic 
imaging results are obtained for highly dissipative 
materials like polymers, wood and plywood: high 
damping prevents the standing wave and results in an 
exceptional localization of the subharmonics in the 
defect area [32].  

7060 50 
Frequency [kHz] 

40 

Figure 19: Frequency „satellites“ of the HH and
subharmonics in vibration velocity spectrum for the
GFR-composite with impact: excitation frequency is
20 kHz. 

200 

100 

300 
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Figure 21: Subharmonic images of the delamination 
area in GFR-plastic.

5. Conclusions 
Acoustic nonlinear phenomena develop in a very 

specific way at the interface between solids. The 
nonlinear elastic modes which used to be independent 
in the bulk of a body become coupled within the 
interface area. The acoustic nonlinearity of the 

            a)                            b)                          c) 
Figures 20 a, b, c: Self-modulation imaging of the
impact area in the GFR-composite: a) linear image
(20 kHz); b) 4th harmonic image; c) image at the first
side-lobe of the 10th harmonic (198.8 kHz). 
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interface is determined by overall contribution of the 
modes allowed to exist at the boundary. Such a 
nonlinear coupling across the interface can induce 
nonlinearity in a linear medium or convert the 
boundary between two nonlinear solids into a linear 
interface. 

The interface bonding is a crucial factor for 
development of nonlinear acoustic phenomena in 
inhomogeneous materials. A weakly bonded interface 
driven by an intense acoustic wave displays a specific 
nonlinear dynamics and results in an extremely 
efficient contact nonlinearity associated with either 
symmetrical or anti-symmetrical stiffness variations.  

The sub- and superharmonic resonances strongly 
affect the interface nonlinear performance and lead to 
subharmonic generation, instability, hysteresis, self-
modulation and dynamic chaos of the nonlinear 
contact oscillations. Acoustic wave-cracked flaw 
interplay extends this group of nonlinear oscillation 
phenomena to propagating wave systems and 
introduces a new family of non-classical effects in 
nonlinear (wave) acoustics of solids.  

A number of case studies considered demonstrate a 
high potential of ultrasonic wave interaction with 
nonlinear interfaces for damage detection, location, 
and characterisation. 
 
Acknowledgement 

The author acknowledges support of the Russian 
Fund for Fundamental Research (grant N          
02-02-1624). 

             [28]. A.I. Eller, JASA, v. 53, 758, 1973. 

 
References 
[1]. M.A. Breazeale and J. Philip, In: Physical 

Acoustics, v. XVII, Ed. W.P. Mason, Academic 
Press, New York, 1965. 

[2]. A.A. Gedroitz and V.A. Krasilnikov, Sov. Phys. 
JETP, v. 16, 1122, 1963. 

[3]. J.H. Cantrell and W.T. Yost, Phil. Mag., v. A69, 
315, 1994. 

[4]. J.H. Cantrell and W.T. Yost, J. Appl. Phys., v. 81, 
2957, 1997. 

[5]. F. Rischbieter, Proc. 5th Intern. Congress on 
Acoustics, 1965, vol.1, N D13, p. 4. 

[6]. R.W. Lardner, J. Appl. Phys., v. 55, 3251, 1974. 
[7]. Y. Shui and I. Solodov, J. Appl. Phys., v. 64, 

6155, 1988. 
[8]. M. Hamilton,  D.J. Shull, Yu. A. Il'inskii, E.A. 

Zabolotskaya,  JASA, v. 94,  418, 1993. 
[9]. F.M.Severin, I.Yu.Solodov, and Yu.N. 

Shkulanov, Vestnik  Moskovskogo  Universiteta,  
 Fisika-Astronomiya., v. 43, N4, 105, 1988. 
[10]. Ko Sel Len, F.M. Severin, and I.Yu. Solodov, 

Sov. Phys. Acoust., v. 37,  N6, 610, 1991. 
[11]. I.Yu. Solodov, Ultrasonics, v. 36, 383, 1998. 
[12]. I.Yu.Solodov and C.A. Wu, Acoust. Phys., v. 39, 

N5, 476, 1993. 

 [13]. I.Yu. Solodov and B.A. Korshak, Phys. Rev. 
Lett., v. 88, 014303, 2002. 

[14]. R.A. Guyer and P.A. Johnson, Physics Today, 
30, April 1999. 

[15]. K.R. McCall and R.A. Guyer, J. Geophys. Res., 
v. 99, 23887, 1994. 

[16]. L.A. Ostrovsky and P.A. Johnson, Nuovo 
Cimento, v. 24, N7, 2, 2001. 

[17]. Y.Zheng, R.Maev, and I.Yu.Solodov, Can. J. 
Phys., v. 77, 927, 1999. 

[18]. I.Yu. Solodov, J. Appl. Phys., v. 64, 2901, 1988. 
[19]. Ko Sel Len and I.Yu. Solodov, Sov. Phys.-   

Acoust., v. 38, N1, 79, 1992. 
[20]. I.Yu. Solodov, N. Krohn, and G. Busse, 

Ultrasonics, v. 40, 621, 2002. 
[21]. B.A. Korshak, I.Yu. Solodov, and E.M. Ballad, 

Ultrasonics, v. 40, 707, 2002. 
[22]. E.M. Ballad, B.A. Korshak, I.Yu. Solodov, N. 

Krohn, and G. Busse, Proc. 16th ISNA, Moscow, 
2002, vol. 2, pp. 727-734. 

[23]. K.L. Johnson, K. Kendall, and A.D. Roberts, 
Proc. R. Soc. Lond., A324, 301, 1971. 

[24]. C. Pecorary, Ultrasonics, 2004 (in press). 
[25]. A. Moussatov, V. Gusev, and B. Castagnede, 

Phys. Rev. Lett., v. 90, 124301, 2003. 
[26]. K. Iganaki, O. Matsuda, and O.B. Wright, Appl. 

Phys. Lett., v. 80, 2368, 2002. 
[27]. Kneubuehl, F. K., Oscillations and waves, 

Springer, Berlin, 1997. 

[29]. N. Minorsky, Nonlinear oscillations, D. Van 
Nostrand Co. Inc., Princeton, 1962. 

[30]. I.Yu. Solodov, A.F. Asainov, and Ko Sel Len, 
Ultrasonics, v. 31, 91, 1993. 

[31]. I.Yu. Solodov and A.F. Asainov, In: 
Nondestructive testing, Eds. V. Hemelrijk & 
A. Anastassopoulos, Balkema, Amsterdam, 
1996, pp. 73-79. 

[32]. N. Krohn, K. Pfleiderer, R. Stoessel, I. Solodov, 
and G. Busse, Proc. Int. Conf. Acoustical 
Imaging 27, Saarbruecken, 2003 (in press). 

[33]. A.A. Stromkov, I.N. Didenkulov, N.M. 
Kurochkin, and V.V. Chernov, Proc. 16th ISNA, 
Moscow, 2002, vol. 2, pp. 799-802. 

[34]. V.V. Kazakov, A. Sutin, and P.A. Johnson, 
Appl.Phys.Letts., v. 81, 646, 2002. 

[35]. V.Yu. Zaitsev, V.E. Nazarov, V.E. Gusev, and 
B. Castagnede, Proc. 3d Int. Conf. ETNDT, 
Thessaloniki, 2003 (in press). 

[36]. E.M. Ballad, S.Yu. Vezirov, K. Pfleiderer, I.Yu. 
Solodov, and G. Busse, Ultrasonics, 2004 (in 
press). 

WCU 2003, Paris, september 7-10, 2003

564


