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Abstract
   Multiple scattering of elastic waves by a finite
number of cylindrical cavities is studied. For very
close scatterers, the regimes of interaction between the
scatterers are identified and compared with those
already investigated for elastic scatterers in a fluid. In
case of empty cavities, a strong interferential
interaction is predominant between cavities, whereas,
for fluid-filled cavities, a strong resonant coupling
different from that of the fluid case occurs with no
obvious single scattering resonance split. The
scattering S-matrix is also introduced. Its unitarity
property, which expresses the energy conservation,
allows to validate the numerical results.

Introduction
   The elastic scattering by a finite number of very
close scatterers is an unexplored subject from the
resonance point of view. Some authors have been
interested in the resonant interaction between two
close elastic cylinders immersed in a fluid [1], and
have shown that some low-frequency single scatterer
resonances, as those of the Scholte-Stoneley, may
split into new resonances whose number is in relation
with the number of scatterers. In the elastic case, does
such a resonant interaction exist, and, if so, is there a
relation between the number of new resonances and
the number of scatterers ?
   In order to answer to these questions, a multiple
scattering modal theory, based on that of Varadan et
al. [2], is developed in a general way for N cylindrical
inclusions in an elastic matrix. Numerical results are
then presented for two and three identical cavities,
either empty of fluid-filled. The scattering S-matrix is
next defined in the field of modal theories by adapting
the Heisenberg formalism of quantum physics [3]. Its
unitarity property expresses indeed the energy
conservation law and consequently allows to check
numerical results.

Elastic scattering by N cylindrical cavities
   A distribution of N cylindrical cavities in an elastic
matrix is considered. The longitudinal L and
transverse T waves propagate with phase velocities cL
and cT. The scatterers are parallel and infinite in the
Oz direction (cf. Fig. 1), and a plane harmonic wave
propagating in the (Oxy) plane is considered. It is thus
a two dimensional problem. In the incidence plane, Oi

is the center of the ith scatterer, (di,χi) and (rij,θij) are
the polar coordinates of Oi with respectively O and Oj

as origin. (r,θ) and (ri,θi) are the coordinates of the
observation point P in the coordinates systems
centered respectively on O and Oi. One considers an
incident L or T-wave of unit-amplitude, angular
frequency ω, incidence angle αinc and wave number
kinc=ω /cinc (the index inc, which stands for L and T,
refers to the incident wave). In the coordinates system
(ri,θi), the incident potential displacement may be
written as
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where Jn is the Bessel function of order n. The time
factor ( )exp i tω−  is omitted in (1) as well as
everywhere throughout the paper.

Figure 1 : Elastic scattering by N cylindrical
cavities  : geometry

The acoustic field scatterered by the ith scatterer can
be expressed as

( ) ( ) ( ) ( )1 ,ii i incL in
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( ) ( ) ( ) ( )1 ,ii i incT in
S n n T i
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C H k r e θψ
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=−∞
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with ( )1
nH the Hankel function of the first kind. In the

present part, the problem consists in determining the
unknown scattering coefficients ( )i incL

nC and ( )i incT
nC .

The incident field on the ith scatterer is the sum of the
plane incident wave and of the field scattered from all
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others scatterers. Thus, assuming the scattering
coefficients ( )i LL

mT , ( )i LT
mT , ( )i TL

mT and ( )i TT
mT of the

single cavity are known, the field scattered by the ith
cavity can be rewritten by means of all other
scattering coefficients ( )j i incL

nC ≠  and ( )j i incT
nC ≠  [2]. For

instance, for an incident L-wave, (2) becomes
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with operator ( )
,
ji

L T nmG  defined as
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−=      (5)
Identification of the two different expressions of the
scattered field leads finally to the following general
linear system
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After solved it, the total scattered field is obtained by
summing all the scattered potentials ( )i

Sφ and ( )i
Sψ , and

can be approximated in far field ( ,L T 1k r ) by use of
the Hankel function asymptotic development. For
instance, the L-component of the total scattered field
may be written in far field as
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where the following far field scattering amplitude is
introduced
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The computation of the scattering amplitudes requires
many calculations. Thus, to validate the results, the
energy conservation law has been verified thanks to
the unitarity property of the scattering S-matrix whose
formulation is given below.

Scattering matrix formalism
   To introduce the scattering S-matrix, the first step
consists in expressing the total acoustic field in far
field. Considering an incident L-wave and using the
Bessel function asymptotic expansion, one obtains the
following expression
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Here, Ψ is a sum of outgoing T-waves, whereas, on
account of the asymptotic expansion of the incident
wave, Φ  is a sum of outgoing and incoming L-waves.
According to Landau and Lifchitz in quantum physics
[3], some more general scattering process can be
generated from linear combinations of (9) and (10)
with a continuous variation of αL. Thus, let us
introduce the scalar product
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where ( )LF α is a 2π-periodic function defined by the
Fourier’s series development
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Therefore, the scattered fields become
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where operators ˆ LLS and ˆ LTS describe the scattered L
and T-waves generated by the incident L-wave. They
act on ( )*

LF α  as follows
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Of course, proceeding as above with an incident T-
wave leads to two other operators ˆTLS and ˆTTS . As
part of modal theories, one has to project the
scattering amplitudes on the basis { }ipe α−  (pþ).
Calculating the projection on this basis is equivalent
to determine the scattering matrix elements Spq from
the following relation

( )ip iq
pq

q

S e S eα αθ
+∞

=−∞

  =  ∑ .                (17)

Since there are four scattering operators, the
projection leads to four infinite matrices whose
elements are given by
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where l1 and l2 stand for L or T.
From these matrices, the scattering S-matrix can be
built so that the energy law conservation SS+= í (the
symbol + designates the Hermitian product while í is
the identity matrix) is verified. In fact, energy flow
conservation calculations [4] clearly show that there
are several possible constructions. For instance
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The unitarity of S has been numerically checked for
two and three cavities with different spatial
configurations.

Numerical results and discussion
The scattering by several identical cavities is studied
when the distance between scatterers varies. The
computations of scattering amplitudes have been
performed for an aluminum matrix with the parameter
values : ρ = 2700 kg/m3, cL = 6380 m/s and cT = 3140
m/s. It should be noted that all curves are plotted
versus the reduced frequency xL= kLa (a is the radius
of the cavities), and that all results have been obtained
in the backscattering case (θ = αL -π). As this study is
based on the detection of resonances, we have chosen
to present only the derivative of the scattering
amplitude phases. The resonance frequencies are then
merely identified by pointing out the maxima of the
phase derivative. As the resonant behavior of empty

and fluid-filled cavities differs, the two types of cavity
are considered separately.

Scattering by empty cavities
   The resonant behavior of an empty cavity excited by
L and T-waves is already known. In both cases, the
waves circumnavigating the cavity are too much
attenuated to resonate and to affect fundamentally the
scattered waves. Depending on their own polarization,
they interfere either with the L-waves or the T-waves
that are specurlarly reflected by the cavity. As the
Rayleigh wave, which is excited by T-waves, is the
least attenuated, we study here only the T→T
scattering.
   Let us consider now two empty cavities in an eclipse
configuration, i.e. when the line linking the centers of
the cavities is parallel to the propagation direction of
incident wave. The centers are separated by distance
βa. Fig. 2 presents the evolution of the peaks of the
phase derivative (in solid lines) as xL and β vary. The
resonance frequencies of the single cavity are
presented in horizontal dotted lines.

Figure 2 : Phase derivative modulus for T→T
scattering by two empty cavities in the eclipse
configuration, plotted versus β and xL

We observe the emergence of a great number of peaks
which belong to a family of parabolic curves. These
curves emphasize interferences between the specular
echo (see Fig. 3, trajectory A) and the waves that
propagate back and forth from one cavity to the other
one (trajectory B). Such an interferential interaction
has already been observed and analyzed for two
elastic shells immersed in water [5]. To confirm this
interpretation, we have assumed that constructive
interferences occur when the distance that separates
trajectory B from trajectory A corresponds to an
integer number of wavelengths. The resulting curves
are superimposed (parabolic dotted lines) on the
diagram, and we notice a good agreement with the
evolution of the phase derivative maxima.
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Figure 3 : Propagation paths of the waves that
interfer

This result confirms that the interaction regime
between the two cavities is not resonant, but always
interferential, even for very small values of β.

Scattering by water-filled cavities
   The resonant behavior of water-filled cavities is
governed by the Whispering-Gallery waves which are
much less damped than the Raleigh and Franz waves.
Therefore, the single cavity exhibits a resonant
behavior, contrary to the empty one, and a resonant
coupling may be observed when N (N>1) cavities are
close to each other To illustrate this strong resonant
character, let us consider three close cavities (β =2.1)
in an equilateral triangle configuration, for example.
The diagram in Fig. 3 presents the evolution of the
phase derivative peaks versus xL and the incidence
angle αL for L→L scattering. The case αL =0°
corresponds to an incidence on the triangle apex. The
three resonance frequencies corresponding to the
single water-filled cavity are superimposed (in dotted
lines) on the diagram.

Figure 4 : Phase derivative modulus for L→L
scattering by three water-filled cavities in an
equilateral configuration plotted versus θ and
αL, diagram obtained for β =2.1

We notice that a large number of resonances appears
in the phase derivative plot (for instance 10 at αL
=43°). The resonances frequencies do not change
versus αL, which is characteristic of a resonant
behavior. In comparison to the case of shells
immersed in water, for example, we note that there is
no obvious relation between the number of scatterers
and the number of resonances. Moreover, most of the

resonances are far off those related to the single cavity
scattering and do not seem to result from the split of
any particular one. These results show that the
resonant interaction between scatterers is more
complicated in an elastic medium than in a fluid
medium. Even for large values of β (β=10), this
strong resonant coupling between cavities still exists.
The regime of interferential interaction observed for
empty cavities appears only for β  values greater than
10.

Conclusion
  The scattering of an elastic wave by cylindrical
cavities in an elastic matrix has been studied. In
particular, we wished to know if a resonant coupling
similar to the one existing for scatterers immersed in a
fluid could occur in the elastic case. To this end, the
general multiple scattering formalism for N inclusions
has been introduced, as well as the scattering S-
matrix, whose unitarity property expresses the energy
conservation and allows us to validate computations.
Two different regimes of interaction between the
cavities have been enlightened : interferential and
resonant. For empty cavities, the interferential
interaction is predominant, even for very close
scatterers. In the case of water-filled cavities, a strong
resonant coupling occurs between the cavities, even
when they are very distant from each other. Because
of the appearance of a considerable number of
resonances relatively to the number of scatterers,
among other phenomenon, understanding of the
resonant coupling appears to be much more
complicated than in the fluid case.
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