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Abstract

Microstructured solids are characterized by intrin-
sic space scales that introduce the scale-dependence
into the governing equations. Based on the Mindlin
model, the simplest scale-dependent 1D equation is de-
rived taking into account the proper scalings against the
wavelength (or frequency) of the initial excitation. The
fundamental properties of such a model are: (i) hier-
arhical structure of the governing equation distinguish-
ing macro- and microbalance; (ii) changes in the wave
speed due to microstructure; (iii) definite influence of
dispersion (due to the inertia of microstructure the dou-
ble dispersion appears). Nonlinearities in both scales
(macro- and microscale) can be taken into account. Nu-
merical analysis by the finite volume method supports
theoretical considerations.

Introduction

In recent years much attention is devoted to the stress
analysis of microstructured materials. This concerns
granular materials, polycrystalline solids, ceramic com-
posites, functionally graded materials, alloys, damaged
materials, etc. Such materials are characterized by the
existence of intrinsic space-scales in matter, like the lat-
tice period, the size of a crystallite or a grain, the dis-
tance between the microcracks that introduce the scale
dependence into the governing equations. From the
theoretical viewpoint, several mathematical theories of
continua have been elaborated in order to catch the in-
fluence of certain inclusions in media.

Beside the theory, experiments provide often only in-
direct data on physical effects related to the behaviour
of materials with microstructure. In terms of wave mo-
tion, there are several physical effects that should be
taken into account like attenuation, dispersion, possible
localisation of damage, stress-induced phase-transition
etc. In addition, the influence of nonlinearities causes
nonadditivity of physical effects and possibly also the
emergence of localised waves (solitons). That is why
the mathematical models should be elaborated with
care in order to be consistent with experiments. Cor-
rectly formulated and solved inverse problems make a
backbone for all the methods of nondestructive testing
(NDT). In NDT, acoustic methods have an important
role but again, the theory and experiments should be

consistent.
In this paper, a rather general mathematical model is

described in order to demonstrate the role of dispersion
for waves in microstructured materials [1,2]. The mod-
elling results will be compared with those based on the
lattice theory or theory of periodic structures. Speak-
ing about NDT at least 2D models should be derived
for wave beams. Nevertheless, the on-axis distribution
of the wave field is rather fully described also by 1D
model if diffractive effects are small (see [3]). At least,
if a 1D model is satisfactorily described, its generalisa-
tion to a 2D model could be done easily [4].

We shall first describe a basic 1D model following
[1,2] and show then its place among the other models.
The main physical effects governed by the model are
discussed. The role of nonlinearities is analysed sep-
arately. Finally, the analytical considerations are sup-
ported by numerical simulation using the finite volume
method.

The basic model
According to [1], the fundamental balance laws for

microstructured materials can be formulated separately
for macroscopic and microscopic scales. Here we use
the simplest 1D model and get [2]

ρ utt = σx, (1)

I ϕtt = ηx + τ, (2)

whereu is the macrodisplacement,ϕ is the microde-
formation,σ is the macrostress (Piola stress),η is the
microstress andτ is the interactive microforce;ρ is the
macrodensity,I is the microinertia and indicesx andt
denote the differentiation. As usual, we have [1,2]

σ =
∂W

∂ux
, η =

∂W

∂ϕx
, τ =

∂W

∂ϕ
, (3)

whereW is the free energy. At this moment, we neglect
the dissipation.

Now the simplest free energy function describing the
influence of a microstructure is a quadratic function

W =
1
2

α u2
x −A ϕ ux +

1
2
B ϕ2 +

1
2

C ϕ2
x, (4)

with α, A, B, C - constants.
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For further analysis we introduce dimensionless vari-
ables and use the slaving principle for eliminatingϕ.
Omitting the details (for those see [2]), the final govern-
ing equation in terms of nondimensional displacement
U reads:

UTT =
(

1− A2

αB

)
UXX +

+ δ
A2

B2

(
I∗UTT − C∗

α
UXX

)

XX

. (5)

Hereδ = l2 L−2, l is the scale of the microstructure
andL, for example, is the wavelength of the excitation,
while X andT are nondimensional space and time, re-
spectively. The quantitiesI∗ andC∗ are determined by
I = ρ l2 I∗ andC = l2 C∗.

Equation (10) is the sought ”skeleton” of the wave
equation for microstructured solids.

Nonlinearities
In NDT, physical nonlinearities are also of impor-

tance. It means that the free energy function (4) should
be implemented by cubic terms16 β u3

x and 1
6 M ψ3. In

this case the nonlinearities are in effect only for macro-
and microstructure and not for the interacting forces.
It seems to be rational to look for nonlinearities sepa-
rately: either in the macroscale or in the microscale. In
the macroscale (β 6= 0,M = 0), an additional term

+k UX UXX (6)

appears in the r.h.s. of Eq.(5) while in the microscale
(β = 0, M 6= 0), the addition to the r.h.s. of Eq.(5)
reads

−δ3/2 ε
A3 M∗

α B3

[
1
2

(UXX)2
]

XX

, (7)

whereM = l2 M∗, k = ε β α−1, ε = U0 L−1 and
U0 is related to the initial excitation.

Discussion
The basic model (5) for waves in microstructured ma-

terials reflects the following physical phenomena:

(i) it describes the wave hierarchy in Whitham’s
sense including two wave operators - one for
macrostructure, another for microstructure; if the
scale parameterδ is small then the last two terms,
i.e. influence of microstructure can be neglected; if
δ is large then on contrary, the influence of first two
terms, i.e. influence of macrostructure is weaker
and the process is governed by the properties of
the microstructure;

(ii) the wave speed in the compound material is af-
fected by the microstructure (1 versusA α−1 B−1)
and clearly onlyA = 0 excludes this dependence.

(iii) the influence of the microstructure on wave mo-
tion is, as expected, characterized by dispersive
terms; however, the double dispersion occurs due
to the different higher order terms(UTTXX and
UXXXX).

Among the other models, eq. (5) is more complete. In
order to carry out comparison, we rewrite eq. (5) in a
form

UTT = c2 UXX + δ (η UTT − γ UXX)XX , (8)

wherec is the velocity(c < c0 = 1) andδ, η, γ are
positive constants.

From lattice theory (see [5] and references therein)
the well-known Born-Karman model yields

UTT = c2
0 UXX − 1

12
c2
0 a2 UXXXX +

+ b UXXXXXX + ... (9)

wherec0 is the velocity anda - the spacial lattice con-
stant.

From the theory of periodic structures [6], the corre-
sponding wave equation reads

UTT = Ω2
1 UXX +

1
3
Ω1 Ω3 UXXXX . (10)

HereΩ1 < c0 andΩ3 < 0.
If in a periodic structure only microinertia is taken

into account, then the governing equation yields [7]

UTT = c2 UXX + h UTTXX . (11)

First, the wave speed. Clearly all the models, except
lattice theory (9) take the influence of the microstruc-
ture into account while the speed is definitely different
from the wave speedc0 in the macromaterial.

Second, the dispersion. Clearly the basic model (5)
takes into account two phenomena: inertia of the mi-
crostructure (termUTTXX ) and velocity in microstruc-
ture (termUXXXX ). Other models are in this sense
less general, paying the attention only to one or another
phenomenon. The further analysis should show the ac-
curacy of models (9), (10), and (11). The double disper-
sion is also important for describing longitudinal strain
waves in rods [8], but the wave speed is then not af-
fected.

We support our results by numerical simulation based
on the finite - volume method [9] that permits to as-
sign all the physical parameters to every volume ele-
ment in a material (or a specimen). As an example, we
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Figure 1: Wavefronts in metal-ceramic composite with
ceramic reinforcement at3 µs, f = 0.75.

consider the wave propagation in metal-ceramic com-
posites. The elastic properties of the metal matrix and
ceramic reinforcement are the following [10]: Young
modulus70 GPa and420 GPa, Poisson ratio0.3 and
0.17, and density2800 kg/m3 and 3100 kg/m3, re-
spectively. Volume fractionf = Vc/V , whereVc is the
volume of ceramic particles andV is the total volume
is varied. A Gaussian-type excitation was generated at
the left boundary of a 2D specimen between 40 and 160
space steps (see Fig. 1)

σ0(0, t) = σ0 sin2(π(t− 2tr)/2tr), (12)

where σ0 = 125 MPa and tr = 10. The initial
wave length corresponds to 20 space steps. In Figs.
1,2 the wavefronts in metal-ceramic composite for vol-
ume fractionsf = 0.75 andf = 0.25 are shown. The
differences in wave speeds are obvious. This supports
all those analytical models that foresee such changes
(models (5), (10), (11)).
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