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Abstract
Resonances of a single thin hollow cylindrical
aluminum shell embedded in a fluid are well known.
At low frequency, they are due to external
circumferential A waves, that may easily couple two
or more shells to each other, provided they are close
enough. This induces a new resonant behavior of the
N-shell cluster (N>1) that we are interested in. We
study different clusters. We show that each resonance
of a single shell splits into M resonances, with M
depending on both the number of shells and the
cluster geometry.

Introduction
A few authors have been interested in the

comparison of the resonant behavior of a limited
number of scatterers with that of one single scatterer.
Huang and Gaunaurd[1,2] have studied the acoustic
scattering by two spherical shells and shown a shift of
low resonant frequencies to lower frequencies as the
distance between shells decreases. Our work follows
that of Kheddioui[3] and Lethuillier[4,5] who studied
aligned thin cylindrical shells. For such shells, the
low-frequency resonances are well separated, and
correspond to an A-wave, which can easily couple
two close shells, as most of its energy is in the
surrounding fluid. When coupling occurs, the A-wave
resonances of one single shell split into new ones.
That split is the subject of this paper.

We first recall the method to determine the
scattered field by N cylinders in a fluid that are
insonified by a harmonic plane wave. Then we look at
the resonances of different N-shell clusters, with
different values of N and different spatial
arrangements of the shells.

Analytic determination of the acoustic scattering
by N shells

The analytic derivations used to determine the
pressure scattered by a N-shell cluster are similar to
Varadan's [6]. The details may be found elsewhere
[7], along with the determination of the scattering S-
matrix of the cluster.

We consider N hollow cylindrical elastic shells
embedded in water. An incident harmonic plane wave
propagates in the (x1Ox2) plane, with an incident angle

α, and the shells are infinite in the Oz direction, so the
problem is a two dimensional one. The observation
point P is placed at (r,θ) in the global coordinates
system and at (rh,θh) in the local coordinates system of
cylinder h, centered at (dh,χh). Figure 1 presents the
geometry and the notations.

Figure 1: Acoustic scattering by N cylindrical
shells. Geometry of the problem

 A e-iωt time dependence is assumed. The wave
number k is equal to ω/c where c is the sound velocity
in the fluid. The incident wave is then written as :
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where Jn(kr) is the Bessel function of order n and
argument kr. The wave incident on cylinder h is
composed of the incident wave and of the waves
scattered by all other cylinders. So, using the
transition matrix T(h) of shell h, , the wave scattered by
cylinder h in its local coordinates system
is:
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where the Cm

(h) are unknown coefficients, Hn
(1) the

Hankel function of the first kind, and Gnm
lh the

elements of the Graff matrix defined by:

( ) ( ) ( ) ( )11 lhm n i n mhl
nm m n lhG e H krθ− −

−= − . (3)

x1χh θ

x2

Oh

Ol

dh

P
θl rl

r

α

Incident
plane wave bh

ah

rlh

θlh

WCU 2003, Paris, september 7-10, 2003

1217



The second equation in relation (2). is the system
to be solved in order to express the total scattered field

sΦ  :
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Use of the asymptotic development of the Hankel
function allows the determination of the far field
scattered amplitude f(θ,α) defined as:
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Numerical study of resonances
The shells we consider are in aluminium with a

density ρ=2790 kg/m3, a longitudinal velocity
cl=6120 m/s and a shear velocity cs=3020 m/s. The
ratio of the inner radius b to the outer one, a, is equal
to 0.9.

The resonance spectra are obtained from the
backward form function F∞ , by plotting the
frequency derivative ds/dx of the curvilinear abscissa
s of the form function Argand diagram [8]:
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and x=ka.
We look only at the frequency domain in which

all resonances are due to the A-wave. No interesting
phenomenon occurs at higher frequencies.

N aligned shells
Lethuillier showed that for N aligned and equally

spaced shells in the eclipse configuration, i.e. when
the incidence direction is parallel to the direction of
alignment of the shells, each resonance of a single
shell splits into N new ones when the shells are close
enough i.e. β<2.3, with βa the distance between two
centers.

Figure 2 shows the split of one resonance of the
single shell into three different ones in the case of
three aligned shells with β=2.06.
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Figure 2: Zoom of the resonance spectrum of three
aligned shells, β=2.06. The one shell resonance

(dashed line), is split into three well-separated ones
(solid line).

Lethuillier has shown [5] that the low frequency
resonances of the N-shell grating are those of the N-1
shell grating, shifted towards lower frequencies
because of an added mass effect, and that the highest
frequency resonance is the only one due to the
coupling of all N shells together.

 Variation of the incidence angle, yet, induces a
new split of the resonances. Each of the N resonances
of the eclipse case may split, at one value of the
incidence angle, into two new overlapping ones.
Figure 3 shows the evolution of the resonance
spectrum with the incidence angle. Amplitudes are
coded in grayscale; light colors correspond to low
amplitudes and dark colors to high ones. The solid
line represents the position of the single shell
resonance.
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Figure 3: Three aligned shells, β=2.06. Resonance
spectrum evolution with the incidence angle.

The same phenomenon occurs whatever the
number N of shells: the A-wave resonances of one
shell split into N well separated ones, as in the eclipse
configuration, and each of these N resonances will
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split, for some value of the incidence angle, into two
overlapping ones.

The situation is still more complicated for other
shell configurations, as shown in the next section.

N non-aligned shells
The resonance spectrum evolution, with the

incidence angle, for three shells placed at the apexes
of an equilateral triangle is shown in Figure 4. In this
case, each single shell resonance splits into four well-
separated resonances, as may be seen in figure 4, and
none of them ever splits again into overlapping ones.
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Figure 4: Three shells in an equilateral triangle
configuration, β=2.06. Resonance spectrum evolution
with the incidence angle. 0° corresponds to incidence

on an apex.

The relation we found in the last section between
the number of resonances and the number of shells is
no more valuable in that case.

The resonance spectrum evolution for four shells
placed at the apexes of a square is shown in figure 5.

In this case, each single shell resonance splits into
three well separated new ones, and each one of them
may split again, at some value of the incidence angle,
into two overlapping ones, same way as we found for
aligned shells. We have now four shells, and six
resonances.

At this point, there seems to be no simple relation,
contrary to the case of aligned shells, between the
number of shells and the number of resonances each
resonance of a single shell splits into.
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Figure 5: Four shells in a square configuration,
β=2.06. Resonance spectrum evolution with the
incidence angle. 0° correspond to incidence on an
apex.

Now, on a single shell, all resonances are
associated to the propagation of the A-wave with such
a velocity that an integer number of wavelengths fits
over the circumference of the shell. In case of clusters,
of course, it is also rather tempting to associate each
resonance to a closed propagation path corresponding
to a standing wave. However, such an association is
not so easy to find, and Decanini et al.[9]have
proposed, as a first step, to explain the number of
resonances of a given cluster from symmetry
considerations. Each cluster they studied belongs to a
different symmetry group, characterized by M
irreducible representations. Using character tables,
they decompose the far field form function into M
sub-sums, each one  corresponding to an irreducible
representation. For two shells, there are four of them,
as well as for three shells in an equilateral triangle
configuration. Four shells in a square configuration
correspond to a symmetry group with six irreducible
representations. So far, then, the number of irreducible
representations is equal to the number of resonances.

However, two shells and three aligned shells
belong to the same symmetry group, but we found six
resonances for the three aligned shells. It seems, then,
that the number of irreducible representations of a
symmetry group is indeed the number of resonances,
provided two conditions are met : the cluster belongs
to that symmetry group, and it is composed of a
minimum number of shells.

Using the form function decomposition given
in[9], we have plotted the resonance spectrum
associated to each sub-sum, for a few clusters. Figure
6 corresponds to the equilateral triangle configuration,
for which we found only four well-separated
resonances. This figure shows that each sub-sum is
not associated to one (and only one) resonance, even
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in that particular case for which the number of sub-
sums is indeed the same as the number of resonances.

The same conclusion may be drawn for the case
of overlapping resonances [7].

The way the symmetry properties of the cluster
influence its resonant behavior is still, then, not
understood.
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Figure 6: Three shells in an equilateral
triangle configuration, β=2.06; α=50°. comparison
between the resonance spectrum on top and the
frequency derivative of the curvilinear abscissa of
sub-sums labeled as in [9].

Conclusion
We have studied the resonances of clusters made

of N hollow cylindrical elastic shells embedded in a
fluid. For close enough shells, each low-frequency
resonance of one single shell, due to the external A-
wave, splits into M new ones.

M depends both on N and on the spatial
arrangement of the shells. For N aligned shells, there
are, for each single shell resonance, N well-separated
cluster resonances. Each one of them may also,
depending on the incidence direction, split into two
overlapping resonances, so that M=2N.

For non-aligned shells, we found no simple rule
for the value of M.

For those clusters composed of the minimum
number of shells so that they belong to a given
symmetry group, however, it seems that M is equal to
the number of irreducible representations of that
group. As soon as N is increased, with the cluster still
in the same symmetry group, M increases, in a way
we still do not understand.
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