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Abstract
   It was shown for elastic plates immersed in water
that the PGM allows us to obtain a radiation quality
factor QR [1] by studying the frequency derivative of
the phase φ  of the reflection coefficient. Indeed, when
plotted versus frequency in the vicinity of a
resonance, the product of the frequency with the
frequency phase derivative, f f∂φ ∂ , exhibits a
maximum located at the resonance frequency. The
maximum amplitude is proportional to the ratio of the
resonance frequency to the resonance half-width,
which corresponds to the definition of a quality factor.
In this paper, we study a viscoelastic plate in which
the longitudinal and transverse phase velocities are
complex. We show that the PGM is still efficient to
obtain a quality factor QR. Moreover, this method
allows us to decompose it as follows: 1/QR = 1/QE +
1/QV, where QE depends on the elastic properties and
QV on the viscous ones.

Introduction
   A radiation QR factor can be evaluated by studying
the frequency derivative of the phase φ  of the
reflection coefficient R of a plate in the vicinity of a
resonance frequency. This QR factor is linked to a
frequency pole of R, denoted as P resf f j 2= − Γ , and
defined as R ResQ f= Γ . It is associated with the
temporal attenuation of the reflected wave by the
plate. For an elastic plate, the resonance width
depends on the plate elastic parameters and on the
fluid loading. In the case of a viscoelastic plate, the
resonance width also depends on the viscosity in the
plate. This global width Γ  can be decomposed in a
term EΓ  due to the elastic effects and a term VΓ  due
to the viscous ones [2]. It implies that E VΓ = Γ + Γ
and therefore the global radiation QR factor can be
obtained from the following relation: 1/QR = 1/QE +
1/QV, where E Res EQ f= Γ  is an elastic Q factor and

V Res VQ f= Γ  a viscosity Q factor. The QR factor can
be obtained from the roots of the dispersion equation
of the immersed plate, the QV factor from the roots of
the dispersion equation of the plate in vacuum and the
QE factor from the roots of the dispersion equation of
the immersed plate without viscosity. In this paper, we
show that the study of parts of the global function
f f∂φ ∂  derived from the PGM, using adapted

corrective terms may give good estimates of the
different Q factors introduced.

Basis of the method
   The factorized expression of the reflection
coefficient is [3]:

( )( )
2

A S

A S

C CNR
AS C j C j

− τ
= =

+ τ − τ
.

The roots of CA,S (resp. A, S) correspond to the
antisymmetric and symmetric normal modes of the
plate in vacuum (resp. in water) and τ  is the ratio of
the acoustic impedances in water and in the plate. The
functions CA,S and τ  are complex for a viscoelastic
plate because the longitudinal and transverse phase
velocities are complex. They can be written
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0L,Tc  are the phase velocities without
absorptions and L,Tr  are the loss factors defined as

0L,T L,T L,Tr c /= α ω . L,Tα  are the absorption
coefficients corresponding to the imaginary parts of
the wave numbers. They are assumed linearly
dependent on the angular frequency ω  in the
frequency range 2 MHz < f< 3 MHz. So, the loss
factors are constant. For the numerical results, we
consider a 3 mm-thick makrolon plate immersed in
water experimentally investigated [4]. The parameter
values are 

0Lc 2235 m/s=  (measured),
0T c 800 m/s=

(estimated), Lr 0.0196=  (measured), T r 0.1=
(estimated), density 3

S 1200 kg/mρ =  for the plate and
the phase velocity is Fc 1470 m/s=  and density is

3
F 1000 kg/mρ =  for water.

The global phase φ  of the reflection coefficient can be
written as: N A S(f)= (f)- (f)- (f)φ φ φ φ , where

I
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X (f)(f ) atan ,  X=N, A, S
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 
.

Here and in the following, the indices R and I indicate
the real or imaginary part of X. the functions
depending on the frequency derivatives of the
different phases can be written

WCU 2003, Paris, september 7-10, 2003

1471



I R
R I

X
2 2
R I

X XX X
f ff f

f X X

∂ ∂−∂φ ∂ ∂=
∂ +

.

In Figure 1, the plots of these functions are presented
at 5θ = ° . Contrary to the case of an elastic plate, the
global phase derivative (green line) exhibits
minimums in the vicinity of the resonances and we
can observe a non zero background. The phase
derivative of the numerator N (blue line) is negligible.
In the vicinity of a resonance associated with a
symmetric (resp. antisymmetric) mode, the phase
derivative of S (red line) (resp. A) exhibits a
maximum and the phase derivative of A (black line)
(resp. S) a minimum.
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Figure 1.

Determination of the QR factor
We can compare the plots of A,Sf f∂φ ∂  with the ones
of the approximate function of Breit-Wigner type

defined as ( )
( ) ( )
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Γ∂φ ∂ =
− + Γ

, where

Resf j 2− Γ  is a root of A or S. In Figure 2, we present
the plots of the exact functions Af f∂φ ∂ (black line)
in the vicinity of the A3 mode and Sf f∂φ ∂ (red line)
in the vicinity of the S3 mode, as well the plots of the
approximate functions ( )A app

f f∂φ ∂  (dashed blue

line) and ( )S app
f f∂φ ∂ (dashed green line). Even if the

exact plots of A,Sf f∂φ ∂  do not fit a resonant Breit-
Wigner form in the vicinity of a resonance due to an
antisymmetric or symmetric mode, we observe in
Figure 2 that their maximums nearly coincide with
those of the approximate functions. These maximums
are located at the resonance frequencies and their
amplitudes are about twice the value of the QR factors.
The error for the A3 and S3 modes is inferior to 7 %.
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Figure 2.

So, the PGM give a good estimate of the global
radiation QR factor.

Determination of the QE factor
In order to obtain the elastic QE factor, we have
plotted A,S f∂φ ∂  considering no longitudinal loss
factor in the plate in Figure 3. Due to the strong
transverse loss factor (rT = 0.1), all happens as if the
plate was fluid.

2.2 2.4 2.6 2.8 3
f MHz

2 106

4 106

6 106

8 106

0.00001
rL0, rT0.1 5°

Figure 3.

We observe maximums regularly spaced of same
amplitude, alternately associated with antisymmetric
(black line) and symmetric (red line) mode
resonances. The horizontal line indicates the inverse
of the imaginary parts of the roots E E Ef f j 2= − Γ  of
A and S with rL = 0. We note that the maximums
underestimate the value of the imaginary part. For the
fluid plate model, we have an analytical expression of
the roots of the dispersion equation:

( ) ( )
0 0

2
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where n is an integer. Analytically, the inverse of the
maximum amplitude of A,S f∂φ ∂  is:

( )0 0

2

L L Fc d 1 c c sin  π − θ τ

In our case, the acoustic impedance ratio τ is not
small. For an incidence angle θ ranging from 0° to
20°, its value is about 0.5. So,

3a tanh   +1 3 ...τ ≅ τ τ + cannot be identified to τ and
we have to consider the third order term. In order to
obtain the true value of the root imaginary part via the
PGM, we have to substract to the function A,S f∂φ ∂

the correction term ( )0 0

2

L F Ld 1 c c sin c 3π − θ τ .

As shown in Figure 3, the maximum amplitudes of the
corrected functions (blue line for antisymmetric
modes and green line for symmetric ones)) allow us to
obtain the root imaginary parts. Multiplied by the
frequency, the maximum amplitudes allow to estimate
the elastic QE factor.

Determination of the QV factor
The viscosity QV factor can be obtained from the roots

V V Vf f j 2= − Γ  of the dispersion equations A,SC 0=
of the viscoelastic plate in vacuum. If we still consider
the viscoelastic solid plate as a fluid plate, the
function CS is the inverse of the function CA. It can be
written

2*
S A AC C C=  (the asterisk * indicates the complex

conjugate). The exact phase of the S function is
I
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If we neglect the second order terms, the approximate
expression can be written
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Using the RST expansion in the vicinity of the real
part fV of a root of CA and identifying the half-width

V 2Γ  to - ( )I R
V

A A f
C C f∂ ∂ , we can write the

function 
appSf f∂φ ∂  in the following resonant form of

Breit-Wigner type:

( ) ( )( )app

2 2
S V V V Vf f f 2 f f 2∂φ ∂ = − Γ − + Γ .

It explains why the plot of the exact function
Sf f∂φ ∂  in Figure 1 exhibits a minimum for the

resonance frequency assigned to the A3 mode. Due to
the small value of the acoustic impedance ratio, the
exact function contains a background term to remove
in order to only keep the resonant term. The
background can be identified to the function

LS(r 0)f f=∂φ ∂  in which no longitudinal loss factor rL is
taken into account.

In Figure 4, we have plotted, in the vicinity of the A3
mode resonance frequency ( 5θ = ° ), the exact
function Sf f∂φ ∂  (black line), the function

LS(r 0)f f=∂φ ∂  (red line), the difference of the two
previous functions, namely the corrected function
(blue line) and the function BWCA. This last function
is defined as

( ) ( )( )2 2
A V V V VBWC f 2 f f 2= − Γ − + Γ ,

where V Vf  and 2Γ  are the real and imaginary parts
of the zero of CA corresponding to the A3 mode.
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Figure 4

We observe that the plots of the corrected function
and the BWCa function nearly coincide.
Therefore, the study of the corrected function

Sf f∂φ ∂  allows us to obtain the QV factor for an
antisymmetric mode. As well, the study of the
corrected function Af f∂φ ∂  allows us to obtain the
QV factor for a symmetric mode.

In the following, we verify the validity of the
obtaining of the global quality factor QR via the
determination of the elastic QE factor and the viscosity
QV factor either by the roots of the adapted dispersion
equations or by the PGM. This validation is
performed for a given mode (A3 mode) when the
incidence angle varies from 0° to 20°. In this angle
range, the resonance frequencies of the A3 mode
ranges from 2.2 MHz to 2.7 MHz. In Figure 5, we
compare the frequency evolutions of the QR, QE and
QV factors obtained either from the calculations of the
roots of the associated dispersion equations or from
the study of the frequency phase derivatives, corrected
or not.
The plots of the evolutions of the QV factor obtained
from the roots of the dispersion equation CA (solid
orange line) and the QV factor obtained from the
corrected Sf f∂φ ∂  function (dashed yellow line)
nearly coincide. They linearly decrease from about 51
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to 43. The plots of the evolutions of the QE factor
obtained from the roots of the dispersion equation

( )LA r 0=  (solid blue line) and the QV factor obtained
from the corrected 

LA(r 0)f f=∂φ ∂  function (dashed
green line) are superimposed. They slightly decrease
from 15.5 to 14.5. The evolution of the QR factor
obtained from the roots of the dispersion root A is
shown by the solid black line, the one of the QR factor
obtained from the Af f∂φ ∂  function is shown by the
dashed red line. These last two plots do not coincide
as well as the two first couples of plots, but the
difference is always inferior to 7 %. They decrease
from 12 to 10.8 very smoothly.
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We can say that the comparison of the results obtained
by the two methods are globally correct. We can also
observe that the main part of the global radiation
quality factor QR is due to the elastic QE factor.
Nevertheless, the influence of the viscosity featured
by the QV factor is not negligible.
The QR factor can be recovered from the QE and Qv
factor by means of the relation

( )R E V E VQ Q Q Q Q= + . In Figure 6, we compare the
plots of the evolution of the QR factor obtained from
the roots of the dispersion equation A (solid black
line), the evolution of the QR recovered from the QE
and QV factors obtained from the roots of the
associated dispersion equations (dashed red line) and
the evolution of the QR recovered from the QE and QV
factors obtained from the phase derivatives (dashed
blue line). The comparison of the three plots is quite
good.
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Conclusion
   The PGM is a well adapted method to obtain the
radiation quality factor QR associated with the
resonances of a viscoelastic plate. It gives good
estimates of this Q factor whose exact determination
needs heavy calculations of complex roots of the
dispersion equation. Moreover, the study of the
properties of the frequency derivatives of the different
parts of the phase of the reflection coefficient permits
to separate the elastic and viscous parts involved in
the radiation mechanism by the viscoelastic plate.
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