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Abstract 
This paper is a brief review of new acoustical 

properties of nonequilibrium media, which are caused 
by the inversion of the second (bulk) viscosity at some 
nonequilibrium degree. Among them there are new 
dispersion characteristics; the sound beam self-
focusing; new properties of parametric interactions of 
sound waves with thermal waves and vortices. Media 
with a negative viscosity are acoustically active.  In 
such media it is possible an existence of stationary 
structures that are essentially different from the shock 
wave monotonic structures. These structures were 
usually investigated with using nonlinear equations, 
obtained for low-frequency and high-frequency 
acoustical disturbances separately. The disadvantage 
of these equations is their disability to describe a 
nonstationary evolution of disturbances with a wide 
spectrum. In the present paper it is investigated the 
solutions of general nonlinear equation, describing a 
wide spectrum acoustical disturbance evolution in 
nonequilibrium media with the exponential relaxation 
model.  

 
Introduction  

 
The gasdynamics of nonequilibrium media (e.g. 

nonisothermal plasmas, chemical and optical active 
gases, reactors, atmospheric condensation) is 
investigated in numerous works. An interest to this 
problem is caused both the wide region of 
nonequilibrium gas applications and the unusual 
gasdynamic phenomena (the amplification of sound 
waves, a new shock waves structure and precursors, 
changes of aerodynamical forces, the intensive vortex 
generation etc.). Their clear theoretical explanations 
do not exist yet. It is necessary to look into the root of 
these phenomena and to investigate an acoustics of 
nonequilibrium media in more detail. 

The vibrationally excited gas with the exponential 
relaxation model  
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is the simple model of nonequilibrium media with 
the negative second viscosity. The pressure 
disturbance in this model has form 
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are the sound speed and the second viscosity 
coefficient (its real part). 

Here 0
2
0

2
000 /)( VV CuuC −τρ=ξ ∞∞  is the low-

frequency second viscosity coefficient; 
,/0 mTu ∞∞ γ= −γ= mTu /000  are the frozen 

( )/( 00
1

00 ∞∞
−τ≡ω>>ω VPVP CCCC  and 

equilibrium (ω<<ω0) sound speeds; 
∞∞∞ =γ VP CC , 000 VP CC=γ ; ∞∞ VP CC ,  are 

the frozen specific heats at constant pressure or 
volume; ( ),0 ρ∞ τ−τ++= TPP ScCC

TVV ScCC τ++= ∞0  are the equilibrium (low-
frequency) specific heats in vibrationally excited gas 
with relaxation law (1)[1]; 00 /TQS τ=  is the 
nonequilibrium degree; dTdEc e /= ; 

;ln/ln 00 TT ∂τ∂=τ ;ln/ln 00 ρ∂τ∂=τρ   

 
Acoustics of nonequilibrium media 

 
In nonequilibrium media the sound speed depends 

on the nonequilibrium degree S. There are regions of 
S, where the dispersion is positive ∞< uu0 like 
dispersion in an equilibrium medium, negative 

∞> uu0  or where 02
0 <u  and the low-frequency 

sound does not propagate [1-4]. 
The dependence of the sound speed on S leads to 

the different  acoustical density of the nonequilibrium 
and the equilibrium media. It can be shown the 
possibility of the anomalous sound waves reflection 
with 1>R  on the equilibrium-nonequilibrium gas 
boundary. Moreover, the strong difference between 
the frozen and equilibrium speed can be one of the 
reasons of the known drag and lift aerodynamical 
forces changes in nonequilibrium media. 

In vibrationally excited gases the second viscosity 
coefficient 0ξ  become negative at 

TVCcS τ+τ> ρ∞/ . This condition corresponds to 
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the positive feedback between the gasdynamic 
disturbance and nonequilibrium heating: in 
compression regions the nonequilibrium heating 
increases and such medium is acoustically active. The 
acoustical increment has simple form 

3
0

2

2 suρ

ξω
=α            (3) 

It is received also the second viscosity coefficients 
and investigated the sound dispersion at other models 
of the vibrational and rotational relaxation, in 
chemically active mixtures, nonisothermal plasma and 
some others nonequilibrium media, including the 
many relaxation and many components media [1-4]. 
In last cases the frequency dependencies )(),( ωωξ Su  
become more complicated, but increment keeps its 
simple form (3). The general condition of acoustically 
instability is  

 
0)( <ωξ . 

 
 In high- and low-frequency limits the increment 

(3) equals to the superposition of partial coefficients 
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0 2/ ρξω=α uii , where i0ξ is the low-

frequency coefficient of the second viscosity, forming 
by i-relaxation process. It simplifies significantly the 
stability analysis of such complicated nonequilibrium 
media and gives useful classification of the sound 
propagation regimes. In result it is both systematized 
(and simplified) the known instability conditions in 
different nonequilibrium media and found new 
instabilities regions. For example in [2] we present 
the most detail classification and critical investigation 
of the main mechanisms of the glow discharge atomic 
gas acoustically instabilities (in homogeneous 
approximation). It is important to emphasize that the 
conditions of the plasma acoustics activity coincide 
with the inversion of the second viscosity. Acoustical 
increment in nonequilibrium media with slow varying 
parameters is equal to the sum of α in the form (3) and 
the quasi-stationary or the inhomogeneous addition, 
which is different for the pressure, density and 
velocity disturbances [5,6]. 

The negative second viscosity leads not only to the 
sound instability, but also to the decrease of the 
threshold (the critical Reynolds number) of the 
laminar-turbulent nonequilibrium flow transition [7]. 

In acoustically active media there are new 
properties of the parametrical interactions. Among 
them the vortex and temperature waves parametrical 
amplification without the threshold [8]. Moreover, the 
vortex and temperature waves increment is 
proportional to the sound gain α , if the sound field is 

weak, or ~ to the αexp in the strong sound field. It 
can lead both to the intensive whirl excitation and to 
the temperature stratification of such media.  

There is another interesting property of the 
acoustical active media. As is known, high-power 
acoustic beams spreading in a liquid or gaseous 
medium give rise to an aperiodic motion of the 
medium called the acoustic wind. One of the reasons 
of this flow is caused by the viscous losses of the 
acoustic wave momentum and the appearance of the 
radiation force α~F . In acoustically active medium 

0<α . In result the radiation force and the acoustic 
wind directions must change to opposite[9]. A 
nonequilibrium medium gives energy to the 
propagating acoustic wave and moves in the opposite 
direction. Such flows can lead to the selffocusing of 
sound beam. Unlike the equilibrium gaseous and 
liquid media, where the sound wind is one of the 
defocusing reason. In [10] it is investigated two 
mechanisms of the sound beam self-interactions in 
quasi- stationary acoustically active gas media: the 
acoustical wind excitation, which propagates 
oppositely  to the beam moving and the temperature 
cooling in the strong sound field. The both 
mechanisms lead to self-focusing sound beam on the 
length 

αα−−= /)1ln( 0
FF LL , 

 where 2/10 )/7,4( ∫σ≈ NdtLF , N is the sound 

power, )/2(/4 00
24

0 PCua ∞∞ γ+ρπα−=σ , 0a  is 
the beam radius.  

 
Shock wave structures in an acoustical 
approximation 

 
In the second order perturbation theory the 

nonlinear evolution of gasdynamic disturbances in 
media with one relaxation processes is described by 
equation, obtained in  [11] 
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Here )/1/1(3/4 ,0,0,0 ∞∞∞ −χ+η=µ PV CCm , 
χη,  are the shear viscosity and the thermal 

conductivity coefficients; 2/)1( +γ=Ψ ∞∞ ; 
)(0 SΨ=Ψ . Coefficient 0Ψ  can have both the 

positive and the negative signs.  

WCU 2003, Paris, september 7-10, 2003

1308



For waves, traveling in one direction 
( suv/v~ = , 00 /,/)( τθ=τ−=ς tyutux ss ), Eq. (4) 
reduces to 
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22/~ ρτµ=µ su . 

In a low frequency  approximation ( v~~/v~ θ∂∂ y ) 

Eq. (5) reduces with an accuracy to 3~ θ  to the 
modified Kuramoto-Sivashinsky equation  

 
)6(v~~v~~v~)~~(v~v~v~ 00y ςςςςςςςςςς κ+β+ξ+µ=+Ψ  

Eq. (6) is earlier used for a description of wave 
processes in inclined liquid films, reagent 
concentration disturbances at chemical reactions and a 
fusion; electrostatic potential waves in toroidal 
systems etc. In the present work Eq. (6) is obtained for 
small low frequency disturbances, propagating in a 
gas with the relaxation process  (1). In  (6) 

2
0000 2/~ uτρξ=ξ is the second viscosity coefficient, 

22
00 /~/~~

∞∞ ξ=β=κ VVVV CCCC  (with neglect of 

ξµµ
~~,~~ 0

2
0 ). All these coefficients are negative if 

00 >VC  and 0~
<ξ . 

In a high frequency approximation 
( v~~/v~ 1−θ∂∂ y ) Eq. (5) reduces (with an accuracy 

to 2~ θ ) to Burgers equation with a source and a 
integral dispersion 

ςβ−α−µ=Ψ+ ∫∞ςς∞ς∞ dv~~v~~v~~v~v~v~ y ,  (7) 

where 2
00

22
00 /~

∞∞∞ τρξ=α uCC VV  is the 

dimensionless gain (at 00 <ξ ) of a high frequency 

sound, ∞∞α≈β VV CC /~
0 is the dispersion 

coefficient.  
An evolution of a small disturbance with a wide 

spectrum must be investigated basing on  Eq.(4).  At a 
weak dispersion 1~/)(~ 22

0
2 <<θ−= ∞∞ uuum  and Eq. 

(4) can be written in form 
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Numerical solutions of Eq. (8) are found with a help 
of splitting method in suggestion of the negative total 

viscosity 02/~~~~~
000 <−µ=µ+ξ=µ ∞ VV CCmΣ   

and .0,0 00 >Ψ>Ψ> ∞VC   
An initial disturbance has the form of a step-like 

function. Evolution ways depend on an initial 
amplitude of disturbance 1v~ . )  

If cr1 v~v~ > the evolution leads to a rounded front 
of the step (Fig. 1). At 0~ =µ∞  it is obtained 

)(/|~|2v~ 00cr ΨΨΣ −µ= ∞∞VV CC .  
Such rounded front is typical also for relaxing media 
at 0~ >µ Σ  and a nonlinear effect predominating.  

 

 
 
At cr1cr v~v~v~ <<′ , where 

)2(/|~|2v~ 00cr ΨΨΣ −µ=′ ∞∞VV CC , one (as in 
Fig. 2) or a few maximums and minimums were 

observed on the disturbance front.  
 At  cr1 v~v~ ′< the step becomes unstable and 

transforms to a periodical series of stationary impulses 
[12]. 

V~  

Figure 1:The shock wave in relaxing media  

 

ζ  

1V~

V~  

Figure 2: The weak shock wave in 
nonequilibrium media 
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Figure 3:   Autowave impulse 

All structures, described in the present paper, can 
be also obtained by an analytical solution of an  
automodel form ( Wyz −ς= ) of Eq. (8): 
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Their existence is possible only at 0~ <µΣ .  
Fig.3 shows a form of a solitary impulse, 

corresponding to the motion along a separatrix on the 
phase plane. This impulse is exactly similar to the 
stationary impulses of Eq. 8.  

 At 1~/|~| >>µµ ∞Σ  the solitary impulse has a 
strongly asymmetrical form. The leading shock front 
has width |~|2/~)2(~ 00 ΣΨΨΨ µµ− ∞∞∞∞ VV CC  
and trailing front exponentionally decaying with 
decrement ∞∞ VV CC ΨΨ 2/~ 00 . The impulse 
amplitude is exactly crimp v~2v~ ′= . 

 
 
Thus, in the present paper it was predicted the 

existence of stationary shock waves with round or 
nonmonotonous fronts and, also, the strongly 
asymmetrical solitary impulses in media with a 
negative viscosity. We obtained also very interesting 
result, that at negative 0Ψ  the compression step like 
autowave with shock front can exist. Its amplitude 

cr1 v~v~ = . 
 

Conclusion 
 
There are tremendous many unsolved problems in 

acoustics of nonequilibrium media. For example the 
influence of the medium inhomogeneity is very 
weakly investigated. But even in the simplest 
homogeneous models, permitting the analytical 
approaches, we have the essential changes of 
nonequilibrium medium dynamics. They must be 
taken into account in more complicated models. 
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