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Abstract

A study is made of the existence of leaky waves
propagating along a layer inserted into a homoge-
neous medium faster than the quasi longitudinal
bulk wave in this medium. It has been shown that
a sufficient condition for such super high-velocity
leaky solutions to originate is the presence of
concavity on the slowness surface of the quasi
longitudinal waves; the concavity required can
exist in piezoelectric crystals. As an example,
computations for KNbO3 crystal containing a
thin diamond film have been performed. We also
discuss the occurrence of localized leaky solutions
at the interface between two media that differ only
by the sign of piezomoduli and at an infinitesimal
thin metallic layer inserted into a homogeneous
medium.

Introduction

A thin layer inserted into a homogeneous solid
can guide a localized interfacial wave (IW). This
wave can be viewed as originating from a bulk
wave that would propagate in the medium in
the absence of the layer with a group velocity
parallel to the plane becoming the interface; such
a bulk wave is referred to as a limiting bulk wave
(LBW). Certain relations of the type of inequality
between the material constants of the layer and
the medium embedding it decide whether such an
IW appears.
IW can be a truly localized one, i.e. propa-

gating without attenuation caused by the energy
leakage away from the layer-medium interface, or
leaky (pseudo-localized) one. This depends on the

velocity v̂ = ω/k̂ of LBW, where k̂ is the projec-
tion of the wave vector on the interface.
In this paper, we discuss the existence of

IW propagating faster than the quasi longitu-
dinal LBW. The occurrence of such a super
high-velocity IW does not seem possible in
non-piezoelectric media, since no non-uniform
modes exist above the quasi longitudinal velocity
threshold in this case (with reservation that that
the quasi longitudinal wave is the fastest one).
On the other hand, in piezoelectrics the wave
equation still has non- uniform partial solutions
beyond the limiting velocity of quasi longitudinal

waves. These are Coulomb modes coupled with
mechanical displacement and stresses via the
piezoelectric effect. As an example, we describe
super high-velocity leaky IW in KNbO3 crystals.
However, we begin by discussing some general as-
pects of the existence of IW in piezoelectric media
in the presence of an internal plane interface.

Acoustoelectric waves in piezoelectric

media

Consider first a semi-infinite piezoelectric medium
of general symmetry. We shall be making use
of the fact that the characteristics of partial
modes (∝ exp[ik(x+ pαz − vt)]) labelled by the
subscript α, namely, the decay factor pα, the
polarization vector Aα, the electric potential Φα,
the traction fα, the normal projection of electric
displacement Dα, can be found from an eigenvalue
problem for an 8× 8 real matrix

N̂ = −
{

N̂11 N̂12

N̂21 N̂t
11

}

, (1)

where N̂12 = (nn)−1, N̂11 = N̂12(nm), N̂21 =

(mn)N̂11 − (mm), and the superscript ()t means
transposition. The symbols of the type (ab) stand
for 4 × 4 matrices with components (ab)IJ =
akEkIJlbl, I, J = 1, . . . , 4, where a and b is
a pair of three-component vectors and EkIJl =
ckIJl − ρv2mkmlδIJ , I, J = 1, 2, 3, Ek4Jl = ekJl,
J = 1, 2, 3, EkI4l = elIk, I = 1, 2, 3, Ek44l = −εkl.
The unit vector n is perpendicular to the surface
and the unit vector m lies in the surface indicat-
ing the direction of wave propagation, (nn)−1 is
the inverse of the matrix (nn), v = ω/k.
Let us compose eight-component vector

columns ξα = (Aα,Φα,Lα, Qα)
t, where Lα =

ik−1fα and Qα = ik−1Dα and the symbol ()
t

stands for transposition. Generally the matrix
(1) is not degenerate and it can be shown that

N̂ξα = pαξα, α = 1, . . . , 8, at arbitrary values of v
[1, 2].
Of our concern is the vicinity of the limiting

velocity v̂. The matrix N̂ is known to become non-
semisimple degenerate at v̂ [3]. In this case two
eigenvalues merge into one real eigenvalue; let it be
p3(v̂) = p7(v̂) = pd3. The degenerate eigensolution
(pd3, ξd3) corresponds to LBW. The situation v =
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v̂ is referred to as a transonic state (TS) of type 1
[4].
At v = v̂ one has

N̂ξα = pαξα, N̂ξd7 = pd3ξd7 − ξd3, (2)

where ξd7 is a generalized eigenvector and α =

1, 2, 4, 5, 6, 8, d3. Since
(

T̂N̂
)t
= T̂N̂, where T̂ is

an 8 × 8 matrix with elements Tij = Ti+4,j+4 = 0
and Ti,j+4 = Ti+4,j = δij , ξα at v̂ can be introduced
such that

ξα · T̂ξβ = δαβ , ξd3 · T̂ξα = ξd7 · T̂ξα = 0,

α 6= d3, d7, ξd3 · T̂ξd7 = 1, ξd7 · T̂ξd7 = 0. (3)

The vectors ξd3,d7 are real at positive curvature

TS (TS(+)) and purely imaginary at negative cur-

vature TS (TS(−)).
In the vicinity of v̂ the non-degenerate pα and

ξα varies linearly with v− v̂ to the lowest approxi-
mation while pd3,d7 and ξd3,d7 depends on (v−v̂)1/2
rather than on v − v̂. By analogy with the non-
piezoelectric case [5, 6]

ξ3,7(v) ≈ ξd3 ∓∆pξd7, p3,7(v) ≈ pd3 ±∆p, (4)

where the upper sign corresponds to α = 3, ∆p =√
ρ|Ad3|f(v) near TS(+) and ∆p = i

√
ρ|Ad3|f(v)

near TS(−) with f(v) =
√
v2 − v̂2 at v > v̂ while

f(v) = i
√
v̂2 − v2 at v < v̂.

After the above introductory remarks we pass
on to considering three types of the interface
inside a piezoelectric.

Thin dielectric layer

Let a dielectric layer of thickness h be sandwiched
between two halves of a medium. We assume
perfect bonding along the interface. Similar to the
case of non-piezoelectric structures considered in
Ref. [7], the determinant of boundary conditions
∆BC reduces to

∆ = || . . . ||{∆p− iΞ + . . .}, (5)

with Ξ = −(N̂l)33H, where H = kh ¿ 1, (N̂l)33
denotes the contraction ξd3 · T̂N̂lξd3, and N̂l is
matrix (1) of the layer; || . . . || is a determinant
which is of no importance for us.
The value of (N̂l)33 and, hence, of Ξ are nec-

essarily real. In view of the definition of ∆p the
solution exists if Ξ > 0. This inequality can be
fulfilled both at TS(+) and TS(−), depending on
the relations between the material constants of the
layer and the ”main” medium.
Once the wave appears, its velocity vS will dif-

fer from v̂ by a quantity of the order v̂H2. It is
worth noting for further use that vS is smaller than

v̂ in the case of TS(+) and greater than v̂ in the
case of TS(−).
If v̂ is not the slowest TS, than the second-

and higher-order terms in H in (5) are complex,
indicating that near such a TS leaky waves, rather
than pure localized ones, generally emerge. The
imaginary part of the leaky wave velocity has the
order v̂H3.

”180o-domain wall”

Let the upper and lower halves of the bi-crystal
have piezomoduli of opposite sign, with the other
material constants being identical. The two halves
are perfectly bonded.
Assuming the piezoeffect to be weak we con-

sider its influence using perturbation theory. As a
basis for perturbation expansions, ξα’s calculated
at eijk = 0 will be taken.

Representing the corrections δ(n)ξα of the order
(eijk)

n to ξα at v̂ as δ
(n)ξα = M̂(n)ξα where M̂

(n) ∝
(eijk)

n is a real 8 × 8 matrix independent of the
suffix α, and using (2)-(4) allows the appropriate
∆BC to be brought into the expression similar to
(5) in which

Ξ = (M̂ (1))2F3 − (M̂ (1))2G3, (6)

where (M̂ (1))F3 = F · T̂M̂(1)ξd3 and (M̂
(1))G3 =

G · T̂M̂(1)ξd3; the real vectors F and G read as

F = (0, 0,0,
√

2p)t, G = (0,
√

2/p,0, 0)t, (7)

where p = [εnnεmm− (εmn)2]1/2 and εnn = εijninj
and εnm = εijnimj . Explicitly

(M̂ (1))F3 = Γ
{

ε(N̂ (1))F3 + p(N̂
(1))G3

}

,

(M̂ (1))G3 = Γ
{

ε(N̂ (1))G3 − p(N̂ (1))F3

}

,
(8)

where N̂(1) is the correction to N̂ linear in eijk,
ε = εnnpd3 + εnm and Γ = εnn/[ε

2 + p2].
The quantity Ξ (6) is real so that the solution

exists when Ξ > 0. This inequality can hold true
again both at TS(+) and TS(−). The Ξ value has
the order κ2, where κ is the electromechanical cou-
pling coefficient.
If TS under consideration is not the slowest

one, then the wave generally becomes leaky. The
complex corrections to ∆p appear starting from
the term ∝ κ4 so that the attenuation of leaky
IW v′′l ∝ v̂κ6 while the change in the real velocity
|v′l − v̂| ∝ v̂κ4.
Note that the odd powers of eijk cannot

appear in the expansion of the determinant of
boundary conditions, because the value of ∆p
cannot depend on the sign of eijk.
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Infinitesimally thin metallic layer

The piezoeffect is still assumed to be weak. After
some evaluations, one obtains (5) with

Ξ = (M̂ (1))2F3. (9)

Due to (7) Ξ is real and positive at TS(+) inde-
pendently of the material constants. But Ξ < 0
at TS(−). Hence, internal ”metallization” neces-
sarily leads to (pseudo) IW near TS(+) unless the
limiting bulk waves remains non-piezoactive when
the piezoeffect is ”switched on”. The waves cannot
arise in the vicinity of TS(−).
On the other hand, if the thickness of the

metallic insertion is taken into account, then
Ξ = −(N̂l)33H + (M̂ (1))2F3; here (N̂l)33 is the
contraction of ξ′d3 = (Ad3,Ld3)

t with the non-

piezoelectric ”analog” (6 × 6 matrix) of N̂ (1)
describing the elastic properties of the layer. The
solution exists near the negative curvature TS
starting from H ≈ (M̂ (1))2F3/(N̂l)33 ∼ κ2 provided

that (N̂l)33 is negative.

Super high-velocity IW in KNbO3

It has been pointed out that the velocity of IW
originating from LBW exceeds v̂ in the case of
TS(−). The slowness surface of quasi longitudinal
waves can be concave only in piezoelectrics. The
piezoelectric properties must be strong enough
to ”suppress” convexity that elastic properties
provide.
Crystals having concavity on the quasi longi-

tudinal branch are known. In particular, this is
KNbO3 (mm2) where concavity is the most pro-
nounced and exists for (0, 90, 90± 82) cuts (Euler
angles are understood). We discuss the case when
a dielectric layer is inserted.
The existence criterion for IW is fulfilled, e.g.,

for a diamond film. Fig. 1 shows the H-
dependence of the real part v′l of the leaky IW
velocity and attenuation. Here v′l is the inverse
real part of the complex slowness sl (in section
2, for the sake of simplicity, we considered the
complex velocity vl = 1/sl; these definitions are
equivalent within the precision of our estimates).
Starting from the value v′l(0) = v̂L ≈ 7736 m/s,
where v̂L is the velocity of the longitudinal wave
along [001], v′l increases with H. After reaching
the maximum value, v′l goes down and becomes
equal to v̂L at H0 ≈ 0.2. The leaky wave does
not exist for H > H0. Contrary to v

′

l, attenuation
steadily increases with H.
As has been pointed out, to the lowest approx-

imation, v′l − v̂L ∝ v̂LH
2 while v′′l ∝ v̂LH

3. In
the case under consideration, these dependences
are observed enough well up to H ≈ 0.03. Note
also that ”physically” IW disappears at H smaller
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Figure 1: Real part of the leaky wave velocity and
attenuation of the leaky wave as functions of the
diamond film thickness; the orientation of KNbO3

is (0, 90o, 90o).

than H0. The matter is that the singularities of
Green’s function associated with the leaky solu-
tion become strongly smoothed for H exceeding
0.1, suggesting that the leaky wave can barely be
generated when H > 0.1− 0.12 (in particular, the
existence of leaky IW will not show up in the be-
havior of the coefficients of plane mode conversion,
see [7, 8, 9]).
In Fig. 2 the difference v′l − v̂L and attenu-

ation as functions of angle ψ are depicted (ψ is
the angle between the direction of propagation
mψ still lying in the plane (010) and the axis
[100]; v̂L is the quasi longitudinal wave velocity
along mψ). One sees that the v′l − v̂L value
and attenuation decreases and increases abruptly
enough, respectively, with ψ approaching the
critical value at which the curvature of the
slowness surface changes sign. The value of
v′l reaches vL at ψ’s smaller than this critical
angle. However, ”physically” the leaky IW disap-
pears still earlier for the reason already mentioned.

Conclusion

Concavity of the slowness surface of quasi lon-
gitudinal bulk waves in a medium is a sufficient
condition for the existence of leaky IW propa-
gating faster than the quasi longitudinal bulk
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Figure 2: Difference v′l−v̂L (a) and attenuation (b)
as functions of angle ψ; the orientation of KNbO3

is (0, 90o, ψ). 1 − H = 0.1; 2 − H = 0.05.

wave. If this condition is fulfilled, then one
should choose a layer with material constants
securing the existence of such IW. There is no
simple relation between the material constants
of the medium and the layer under which super
fast leaky waves appear. However, as a rough
criterion, one can consider the statement that the
longitudinal wave velocity in the layer should be
greater than that in the medium.
In addition, we have discussed the localization

of an LBW at the interface between two medium
that differ only by the sign of piezoelectric moduli.
In this case, IW may or may not originate near
a TS of any curvature sign, depending on the
material constants. We have also considered the
localization of LBW caused by an infinitesimally
thin metallic layer inserted into a homogeneous
medium. It appears that IW originates indepen-
dently of material constants. But this occurs only
in the vicinity of TS(+).
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