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Abstract

The paper discusses the effect of crystallographic
symmetry on the coalescence of the cut-off
frequencies confining the stop-band of SAW or
leaky SAW (LSAW) spectrum for short- and
open-circuited gratings. Four families of the
orientation have been determined at which two
of the four frequencies coalesce on the homo-
geneous substrate. On layered substrates, the
coalescence occurs provided the orientation of
both the substrate and the layers belongs to
the same orientation family of the four families
determined (the grating is on the outer surface of
the structure). The coalescence of a pair of cut-off
frequencies has been established through the anal-
ysis of the coupling-of-modes (COM) equations
and a numerical algorithm conventionally used to
compute cut-off frequencies and dispersion curves.

Introduction

The cut-off frequencies ω
(±)
oc and ω

(±)
sc at open-

circuited (OC) and short-circuited (SC) elec-
trodes, respectively, are important parameters of
infinite periodic metallic gratings fabricated on
piezoelectrics (the sign ”+” refers to the upper
edge of the stop-band) [1]. These frequencies
can be estimated using the COM equations if
the COM parameters are known explicitly or de-
termined numerically by solving the appropriate
dispersion equations or finding the zeros and poles
of the harmonic admittance Yh [2-4]. Knowing

ω
(±)
oc,sc allows the solution of the inverse problem:
to estimate the COM parameters and, hence, the
characteristics of IDT or reflectors [1].
We will be considering a simple grating formed

of strips shaped symmetrically with respect to
their centers. When such a grating is on the sub-

strate oriented arbitrarily, the four ω
(±)
oc,sc values

are distinct. However, a cut-off frequency for the
OC grating coalesces with a cut-off frequency for
the SC grating if the substrate assumes particular
orientations.
Of interest is that once the frequency degen-

eracy happens, then the substrate is naturally

bi- directional implying that IDTs, unless spe-
cially designed, will generate the right- and left-
propagating waves with equal amplitude. Other-
wise the substrate is naturally unidirectional: any
IDT, even fabricated on the basis of the simple
”symmetric” grating, launches the waves to the
right and left with unequal amplitudes [1].
In the present paper we study the relation be-

tween the crystallographic symmetry of substrates
and the occurrence of cut-off frequency degener-
acy. Note that the relation between the character-
istics of IDT’s and the symmetry of the substrate
has been discussed in [5,6]. Using a simple model
of the wave propagation under gratings, the phase
difference between the normal component of dis-
placement and the potential has been estimated
and some conclusions have been made regarding
the position of the transduction center.
First, we shall consider the problem by ana-

lyzing a numerical model and afterwards we COM
theory.

Numerical procedure

In this section, we outline a method commonly

utilized to estimate ω
(±)
oc,sc. According to [7], the

response of the grating is studied to an external
ac voltage V (m) = V exp[iπm] applied to the
electrodes; here m is the electrode number. The
basic equation is

U(x) =

a
∫

−a

Ĝ′(x− x′)W(x′) dx′, (1)

where a is the electrode half-width, the x-axis is
directed along the surface of the substrate,U(x) =
(A(x),Φ(x))t and W(x) = (f(x), σ(x))t are con-
structed from the displacement A(x), the poten-
tial Φ(x), the force f(x), and the surface charge
density σ(x), the latter two quantities being non
zero only within the under-electrode interval; the
symbol ()t means transposition. Eq. (1) involves
Green’s function

Ĝ′(x) = (1/p)
∞
∑

n=−∞

Ĝ(k(n))eik
(n)x, (2)
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where k(n) = 2π(n+ 0.5)/p, p is the period of the
grating.
The vector W(x) is sought for in the form

W(x) =
∑

n

C(n)P (n)(x), (3)

where P (n)(x) are orthogonal polynoms of degree
n, P (2m)(x) and P (2m+1)(x) being x-even and x-

odd, respectively; the vector C(n) = (C
(n)
x , C

(n)
y ,

C
(n)
z , C

(n)
σ )t involves three components C

(n)
x,y,z of

force and the charge C
(n)
σ .

Within |x| ≤ a it is required that Φ(x) = V ,
A(x) = A(el)(x), f(x) = f (el)(x), where A(el)(x)
and f (el)(x) are the displacement and traction pro-
duced by the vibrations in the electrode at the
electrode-substrate interface. Let the electrode
be isotropic and shaped symmetrically. The x-

odd A
(el)
x (x, z) is then coupled with the x-even

A
(el)
z (x, z) and the x-even A

(el)
x (x, z) with the x-

odd A
(el)
z (x, z). As a result, we obtain that the

x-even U(e)(x) and x-odd U(o)(x) parts of U(x)
become at |x| ≤ a [8]

Ue(x) = Ê(2n)(x)C(2n) + Ê(2n+1)(x)C(2n+1)

+Î′V,

Uo(x) = Ô(2n)(x)C(2n) + Ô(2n+1)(x)C(2n+1),
(4)

where summation over n is understood. In (4)

(Î ′)ij = δ4iδj4, i, j = 1, . . . , 4; Ê
(n)(x) and Ô(n)(x)

are 4x4 x-even and x-odd matrices, respectively,
with non-zero elements

(Ê(2n))ii, (Ê
(2n+1))13, (Ê

(2n+1))31;

(Ô(2n+1))ii, (Ô
(2n))13, (Ô

(2n))31,
(5)

where i = 1, 2, 3. The functions Ê(n)(x) and

Ô(n)(x) can be computed using, e.g., the FVM-
method [9]. However, of importance for us is only

how C
(2n)
x,y,z’s and C

(2n+1)
x,y,z ’s enter into (4).

Let us turn to Green’s function Ĝ(k) entering

(2). Since Ĝ(−k) = [Ĝ(k)]t,

Ĝ(k > 0) = Ĝ(s) + iĜ(a),

Ĝ(k < 0) = Ĝ(s) − iĜ(a),
(6)

where Ĝ(s) and Ĝ(a) are symmetric and anti sym-
metric parts of Ĝ(k), respectively. In view of
k(n) = −k(−n−1) one has

Ĝ′(x) = Ĝ(s)
e (x) + Ĝ(a)

o (x), (7)

where Ĝ
(s)
e (x) is a symmetric x-even matrix and

Ĝ
(a)
o (x) is an anti symmetric x-odd matrix.

We can put (2)) and (3) into (1) and integrate
to obtain, accounting for (7),

Ue(x) = Ĝ
(s)(2n)
e (x)C(2n) + Ĝ

(a)(2n+1)
e (x)C(2n+1),

Uo(x) = Ĝ
(a)(2n)
o (x)C(2n) + Ĝ

(s)(2n+1)
o (x)C(2n+1).

(8)
In (8) the sign of summation over n is omitted and,
with understanding that ”∗” means convolution,

Ĝ
(s)(2n)
e (x) = Ĝ

(s)
e (x) ∗ P (2n)(x),

Ĝ
(s)(2n+1)
o (x) = Ĝ

(s)
e (x) ∗ P (2n+1)(x),

Ĝ
(a)(2n)
o (x) = Ĝ

(a)
o (x) ∗ P (2n)(x),

Ĝ
(a)(2n+1)
e (x) = Ĝ

(a)
o (x) ∗ P (2n+1)(x);

(9)

Ĝ
(s)(2n)
e and Ĝ

(a)(2n+1)
e are x-even while Ĝ

(s)(2n+1)
o

and Ĝ
(a)(2n)
o are x-odd.

Equating now (4) to (8) we arrive at a set of
equations. From the condition for its solubility
with respect to C(n) at V = 0 (SC-grating) and

I ∝ C
(0)
σ = 0 (OC-grating, I is current per elec-

trode) the ω
(±)
sc,oc-values are found.

Note for further use that Ĝ(k > 0) can be writ-

ten in terms of the admittance Ŷ connecting the
vectors U = (A,Φ)t and V = ik−1(f , D)t con-
structed from the characteristics of the wave field
∝ exp[i(kx−ωt)] involving right-propagating (rp)
either non- uniform decaying or uniform reflected
partial plane modes; D is normal projection (i.e.
z- component) of the electric displacement. Specif-

ically, U = iŶV and Ĝ = [k(ε0(Ŷ )44 − 1)]
−1Ĝ′′,

where (Ĝ′′)ij = (1− ε0(Ŷ )44)(Ŷ )ij + ε0(Ŷ )i4(Ŷ )4j ,

i, j = 1, 2, 3, (Ĝ′)i4 = (Ŷ )i4, (Ĝ
′)4j = (Ŷ )4j ,

i = 1, . . . , 4; ε0 is the dielectric constant.
If the substrate is homogeneous, then

Ŷ = B̂−1(Î+ iŜt); (10)

B̂−1 is the inverse and Ŝt is the transpose of

B̂ = i
∑4

α=1[Vα ⊗Vα −Vα+4 ⊗Vα+4],

Ŝ = i
∑4

α=1[Uα ⊗Vα −Uα+4 ⊗Vα+4].
(11)

The symbol ”⊗” denotes diadic multiplication.
The 4-component vectors Uα = (Aα,Φα)

t and
Vα = ik−1(fα, Dα)

t are associated with the par-
tial modes labelled by the index α and together
with decay factors pα are found from an eigenvalue
problem N̂ξα = pαξα, where ξα = (Uα,Vα)

t and

N̂ = −

{

N̂11 N̂12

N̂21 N̂t
11

}

, (12)

N̂IJ are 4 × 4 matrices, N̂12 and N̂21 being sym-
metric. The matrices N̂IJ involve material con-
stants and velocity v = ω/k (see [10] for more
details). Eq. (10) follows from

Uα ·Vβ +Vα ·Uβ = δαβ (13)
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under assumption that α = 1, . . . , 4 label the
modes from which rp-wave fields are constructed.
For layered substrates we use the equation

i
dŶ

dz
= −ŶN̂21Ŷ+ i[ŶN̂t

11− N̂11Ŷ]− N̂12, (14)

where N̂IJ are z-dependent. Eq. (14) is an
analogue of the equation derived in [11] for the
impedance of layered substrates.

Symmetry and frequency degeneracy

Consider four orientation families.

1) x-axis is perpendicular to a plane
of symmetry;
2) x-axis is along an even-fold
symmetry axis;
3) the surface is a plane of symmetry;
4) the surface is perpendicular
to an even-fold symmetry axis.

(15)

We want to prove that in the case of homoge-

neous substrate one of the frequencies ω
(±)
oc be-

comes equal to one of ω
(±)
sc at orientations (15).

For cuts (15) pα’s appear in pairs ±pα. The
eight quantities - Aα, Φα, fα, Dα - become split
into two four-element groups, depending on their
evenness with respect to pα [8, 12]. It can be
checked out that some of the components of ma-
trices (11) vanish identically [8], namely,

1) (B̂)ij = (Ŝ)ql = 0, i = 1, j = 2, 3, 4,
q = l = 1, q, l = 2, 3, 4;

2) (B̂)12 = (B̂)13 = (B̂)24 = (B̂)34 =

(Ŝ)ii = 0, i = 1, . . . , 4, (Ŝ)23 =

(Ŝ)32 = (Ŝ)41 = (Ŝ)14 = 0;

3) (B̂)13 = (B̂)23 = (B̂)34 = (Ŝ)ii = 0,

i = 1, . . . , 4, (Ŝ)12 = (Ŝ)21 =

(Ŝ)41 = (Ŝ)14 = (Ŝ)42 = (Ŝ)24 = 0;

4) (B̂)13 = (B̂)14 = (B̂)23 = (B̂)24 =

(Ŝ)ij = 0, i, j = 1, 2, i, j = 3, 4.

(16)

Note that (Ŝ)ij = 0 when (B̂)ij 6= 0 and vice versa.

Let the notation X̂ 7−→ Ẑ indicate that the
position of zero elements in a matrix Ẑ is the same
as in X̂, i.e. (Ẑ)ij = 0 when (X̂)ij = 0. By direct

calculations one obtains that B̂ 7−→ B̂−1 while
Ŝ 7−→ B̂−1Ŝt and, hence,

B̂ 7−→ Ŷs 7−→ Ĝs
e(x),

Ŝ 7−→ Ŷa 7−→ Ĝa
o(x)

(17)

for each of the cases (15), where Ŷs ≡ B̂−1 and

Ŷa ≡ B̂−1Ŝt are symmetric and anti symmetric
parts of Ŷ, respectively.

With due regard for (16) and (17) we find out

that the set of equations in C(n) becomes split
into two independent subsets. One of them cor-
responds to V = 0 and in addition its solution

has C
(0)
σ = 0. Hence, the cut-off frequency to be

determined from this subset is independent of the
electrode connection so that the degeneracy takes
place which completes the proof.
Consider layered substrates. Let the orienta-

tion of both the substrate and the layers pertain
to the same family of the four families listed in
(15). Using the relation N̂ =

∑8
α=1 pαξα ⊗ T̂ξα,

where T̂ is an 8 × 8 matrix with elements
(T̂ )ij = (T̂ )i+4,j+4 = 0, (T̂ )i+4,j = (T̂ )i,j+4 = δij ,

i, j = 1, . . . , 4, one can show that B̂ 7−→ N̂21, N̂12

and Ŝ 7−→ N̂11. From (14) it then follows that
(17) holds true for layered substrates, yielding
the split of the set of equations as in the case of
homogeneous substrates. As a result, the cut-off
frequency degeneracy occurs.

COM-theory

Consider again homogeneous substrates. The
mechanical part of the reflection coefficients from
a single electrode R(+) and R(−) of the rp- and
left-propagating (lp) waves, respectively, has the
form (see, e.g., [2])

R(±) = (H/p)
∑

α=x,y,z

aαe
(±)2
α . (18)

In (18) e
(±)
α are the components of the vectors

e(±) = u(±)/ϕ(±), where u(+) and u(−) are the po-
larization vectors of the rp- and lp-SAW (LSAW),
ϕ(+) and ϕ(−) are the potential these waves pro-
duce on the surface, H is the electrode thickness.
The coefficients aα depend on the material con-
stants and metallization ratio.
Two cut-off frequencies merge when R(+) =

R(−). This equality is satisfied for orientations

(15). Indeed, it can be derived that e
(+)
α = ε0(Ŷ )4α

and e
(−)
α = ε0(Ŷ )α4, where the correspondence

x, y, z ⇔ 1, 2, 3 is meant. Due to (16) e
(+)2
α =

e
(−)2
α , α = x, y, z, wherefrom R(+) = R(−) stems.
Note that R(+) as given by (18) can also be

equal to R(−) for other orientations. In partic-
ular, when the SAW problem is being consid-
ered, R(+) = R(−)∗ = R and it is required that
Im[R] = 0. The reflection coefficient is a function
of three angles specifying the geometry of propaga-
tion. Since these angles are subject to one relation,
two of them can be viewed as free parameters while
the third angle is found from Im[R] = 0. Hence,
the set of orientations at which Im[R] = 0 is a sur-
face in the 3-D space of orientation angles. If one
of the angles is steadily has the same value, then
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only two angles are changeable and one obtains a
line where the frequencies are degenerate.
We have calculated such a line for the cut fam-

ily (ϕ, 38o, ψ) of LiNbO3 (Fig. 1); the Euler θ-
angle is fixed and equal to θ = 38o and two other
angles are changed. The periodicity of the line
with the period ∆ϕ = 120o is due to the crystal-
lographic symmetry of LiNbO3.
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-80°

-50°-100°

-20°
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-40°

80°
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20°

40°
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Figure 1: Line where R(±) become real.

However, in any of the above cases, except
(15), the degeneracy occurs only approximately
with the accuracy to H/P and is lifted off if the
higher- order terms are taken into account.

Conclusion

We have indicated four families of substrate orien-
tations at which two cut-off frequencies of simple
OC and SC gratings merge. The frequencies fall
into equality not only to the lowest approximation
with respect to the electrode thickness but also
when they are determined via numerical computa-
tions that are believed to completely account for
the ”mechanical” effect of the electrode of finite
thickness. The degeneracy occurs irrespective of
the material constants of the substrate and the
electrode and of the electrode shape. It does
not depend on the metallization ratio and the
thickness of layers coating the substrate.
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