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Abstract 

   This paper deals with the propagation of waves 

along a one-dimensional chain made up of welded 

spheres. First, a theoretical analysis allows the 

vibration modes of the chain to be quantitatively 

described. It has been validated by a comparison with 

numerical and experimental results. It is numerically 

and experimentally verified that the peaks associated 

to the Rayleigh modes broaden out as the mode 

number increases and that the pass-band structure is 

strongly influenced by the characteristic of the 

welding between the cells of the periodic structure. 

The interest of such an approach is then illustrated by 

the examination of the inverse problem, in which the 

analytical model is used to deduce the characteristics 

of the welding. 

 

Introduction 

The propagation of waves through aggregates and 

layered structures was thoroughly studied in the recent 

past [1-3]. To go forward in the comprehension of 

vibration phenomenon related to aggregates and 

layered structures, the study of linear chains of 

spheres has been proposed. This simplified model has 

revealed the existence of allowed and forbidden 

frequency bands [3, 4]. Recently, we have proposed a 

qualitative interpretation of the chain vibrations with 

the help of an analogy with phonons of solid state 

physics [4]. The structure of the acoustic band gaps 

depends on the coupling between the basis unit of the 

chain. It is shown for example that the stronger is the 

coupling and the wider is the pass-band. 

In this paper, a model is first presented to describe 

quantitatively the frequency bands, by the writing of 

the dispersion relations. Then, the model is validated 

both by the measurement of the vibration modes of a 

chain of spheres and by a full calculation using the 

finite element method. One of the main interest of the 

model is that a coupling factor is introduced in the 

equations, directly related to the mechanical coupling 

between spheres. Therefore, it is possible to use the 

model to solve the inverse problem on periodic chains 

of welded spheres: with the help of the experimental 

measurement of vibration frequencies of the chain, 

one can give a quantitative information on the 

mechanical bind between spheres. Finally, 

experimental results on various chains are compared 

with theoretical results, allowing the inverse problem 

to be solved. 

 

Theoretical approach 

The vibration modes of the single sphere have 

previously been presented in details [4]. Three types 

of vibration modes exist : the Rayleigh modes 

R(n>1,1) where a wave is propagating around the 

sphere whereas the center does not move. In this 

paper, one distinguishes the odd Rayleigh modes 

R(2n+1,1), in which the displacement of two points 

diametrically opposed is in phase, and the even 

Rayleigh modes R(2n,1), in which the displacement of 

two points diametrically opposed is out of phase. For 

the whispering gallery modes [WG(n>0, l =2,3,4..)], 

theoretically, the surface of the sphere does not move 

whereas a vibration is observed in the heart of the 

sphere. Finally, at higher frequency, the breathing 

mode corresponds to a radial vibration of the sphere.  

In the next we focus our attention to the vibrations of 

a system composed of identical spheres regularly 

spaced.  

The first part is devoted to the case of an infinite chain 

of identical spheres, with in particular the equations of 

the dispersion curves. Then, the vibration modes of a 

finite chain of identical spheres are presented as a 

particular case of the vibration modes of the infinite 

chain with specific boundary conditions.   

 

Case of an infinite chain of identical spheres 

Consider an infinite chain of identical spheres of 

radius a, regularly spaced of a distance 2d. The 

welding between spheres is taken into account by 

introducing the two parameters (rw, r’w) described in 

Fig. 1 ( '2
w

2 rad −= ). Due to the periodicity of the 

system, the wave number k is introduced for 

designating the vibration modes. Furthermore, one 

knows that k should belong to the first Brillouin zone, 

which is given by [-π/2d, π /2d]. For each k value, a 

vibration frequency ω exists that leads to the notion of 

dispersion curve ω (k).  

Four kinds of collective vibrations would result of the 

association of spheres in a linear chain. First, each 

sphere can be seen as a rigid “atom” which can be 

translated with respect to its neighbors. The dispersion 

relationship is [3]: 

 ω(k)  = (4K/m)
1/2
 sin kd (1) 

where K designates the coupling constant and m the 

mass of an individual sphere. These modes are low 

frequency   modes   (LF)  due  to   the   nature   of  the 
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Figure 1: Definition of the characteristic distances for 

two welded spheres (L, lw, rw and r’w). 

 

displacement of the whole sphere around its 

equilibrium position. If the sphere was perfectly stiff, 

these modes would be the only permitted modes. In 

solid-state physics these vibrations are designated as 

phonons belonging to the acoustical branch. 

A second kind of collective vibrations appears since 

each sphere is elastic and able to vibrate. Depending 

on the nature of this vibration we distinguish three 

kinds of such collective modes, which may be 

designated as molecular phonons due to their origin. 

Considering first the odd Rayleigh modes, the 

equation for the branch of mode n is written as: 

 ωn
2
(k)  = ω0,n

2
[1+(4Kn/mω0,n

2
)sin

2
( kd)] (2) 

where ω0,n (=2πf0,n) designates the resonance 

frequency of the mode for a single sphere and Kn 

measures the coupling between neighbors spheres for 

the mode n. 

For even Rayleigh modes, the equation for the branch 

of mode n is written as: 

 ωn
2
(k)  = ω0,n

2
[1+(4Kn/mω0,n

2
)cos

2
( kd)] (3) 

Finally, in the case of WG modes, the displacement is 

localized inside the sphere. Only weak coupling exists 

between spheres, leading to a flat dispersion curve.  

The numerical propagation of plane acoustic waves in 

an infinite and periodic structure is studied using only 
the mesh of one unit cell, thanks to Bloch-Floquet 

relations. It provides dispersion curves from which 

results of physical interest can be easily extracted: 

identification of propagation modes, cutoff 

frequencies, pass-bands and stop-bands [5,6]. Fig. 2 

presents the first branches of the dispersion curve of 

an infinite chain of steel spheres, the diameter of 

which is equal to 10 mm. The welding between 

spheres is characterized by rw = 1.46 mm and r’w= 

1.04 mm. On Fig. 2, full lines correspond to a finite 

element calculation [5], dotted lines correspond to the 

equation of each branch (Eq. 1, 2 and 3), determined 

with the help of the frequencies at k = 0 and k = π/2d. 

It shows that the equations fit well the dispersion 

curves. The frequency of the single sphere is always 

the lowest value of the branch.  
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Figure 2: First branches of the dispersion curves of an 

infinite chain of steel spheres in the first Brillouin 

zone, with reduced scale. Full line: numerical results, 

dashed line: equation of the branches (Eq. 1, 2 and 3). 

 

Case of a finite chain of identical spheres 

A finite chain can be considered as a particular case of 

an infinite chain by applying appropriate boundary 

conditions. Considering N particles with both ends 

free, which simulates experimental conditions, the 

discrete values of k corresponding to the N modes are 

k = sπ/2Nd with s = 1…N-1for odd modes, and with s 

= N-1…1for even modes. For a finite chain of N 
spheres, we obtain N discrete frequencies for each 

branch (acoustical and molecular branches). Thanks to 

the quantification of the wave number k, one can 

deduce the vibration modes of a chain of N spheres, 

using the previous dispersion curves (Fig. 2). The 

mesh of only one sphere is enough. 

The vibration modes in the particular case of a chain 

of two identical spheres are presented by marks on 

Fig. 3.  
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Figure 3: Numerical results (marks) of a chain of two 

welded spheres, positioned on the dispersion curves of 

the infinite chain of welded spheres. 
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Experimental set-up and specimen 

The experimental set up includes a pair of broadband 

transmitters longitudinally polarized [7]. The emitter 

is  driven by short ultrasonic pulses and a frequency 

analysis of the initial section of the transmitted 

acoustic signal is achieved via a FFT algorithm. The 

axial static force applied along the axis of the 

specimen does not alter the position of the peaks 

(resonance) in the experimental frequency spectra. 

The systems under consideration consist of N welded 

very well steel calibrated spheres. In a first approach, 

the dispersion of the diameters and asphericity of the 

beads are neglected. The spheres are coupled by using 

a spot welding process the principle of which is 

shown in Fig. 4. By adjusting the intensity applied to 

the electrodes it is possible to modify the radius of the 

contact area between two adjacent spheres. It was 

experimentally verified that the contact area are 

identical in the case of samples including three or four 

spherical unity. 

 

 
Figure 4: Sketch of the spot welding process. 

 

The welding between two adjacent beads may be 

characterized by the distance rw which designates the 

radius of the external circular contact area in which 

the roll around the welding is included. Several 

specimen showing different values of rw have been 

built. Two examples of frequency spectrum are given 

in Fig. 5-a and 5-b. The first sample (rw = 1.0 mm, L = 

19.90 mm) is made up of two welded spheres of 

10mm in diameter. The second sample  (rw = 0.8 mm 

and L = 29.88 mm) is made up of three welded 

spherical beads of 10mm in diameter. 

 

Analysis of the results 

The experimental frequency spectra given in Fig. 5 

reveal the following features: 

-- A “splitting” of each normal mode of the 

Rayleigh series R(n,1). In the case of two welded 

spheres we notice the existence of two main peaks; in 

the case of three welded beads we observe three peaks 

the frequency distribution of which is not symmetric. 

The lowest peak of each multiplet exists at the same 

frequency value whatever are the welding conditions 

and corresponds exactly to the resonance frequency 

observed with a single sphere of same material and 

diameter. 

-- The N low frequency modes are detected; 

notice that one of these modes (f = 0) exists for all the 

samples. 

These observations are in very good agreement with 

the numerical approach developed in the previous 

section: a finite chain gives rise to discrete values of 

the wave number k according to the dispersion curves. 

From additional experiments, it was checked that 

when the contact increases between the spheres, the 

frequency range (∆f) between the first and the last 

peaks of a given multiplet enlarges. Moreover it was 

also verified that ∆f increases with the order of the 

mode. 

(a) 

2LF 

 
(b) 

3LF 

 
Figure 5: Examples of frequency spectra obtained 

with a specimen made up of two (a) and three welded 

spheres (b) respectively. 
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To see the influence of the contact on the “splitting 

effect”, Fig. 6-a presents the variations of the 

frequency of the second low frequency mode in case 

of two welded spheres as a function of rw, the 

frequency of the first low frequency mode being equal 

to zero. Similarly, in Fig. 6-b the variations of the 

frequency of the same mode are plotted versus L. On 

both figures, marks correspond to experimental 

results, full line to numerical results [6]. Taking into 

account that the frequency resolution of the 

experimental set-up is 2kHz, one can conclude that 

there is a very good agreement between numerical and 

experimental results. Thanks to Fig. 6 one can use the 

predicting model to solve the inverse problem: the 

characteristic distance rw  and the length L of a chain 

of welded spheres can be deduced using the frequency 

of the low frequency mode.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Experimental and numerical variations of 

the frequency of the second low frequency mode 

versus rw (a) and versus L (b). 

Full line: numerical results, 

 marks : experimental results. 

 

Conclusion 

In this paper, the propagation of short acoustic pulses 

in a chain made of welded spheres has been 

numerically and experimentally studied. Parametric 

study shows that one can use the predicting model to 

solve the inverse problem, it means to deduce the 

characteristics of the welding between the spheres 

using the discrete frequencies.  

Finally, one may question oneself about the extension 

of this work to a more complicated case. The case of 

three welded spheres with two identical weldings has 

been considered and gives a nice agreement between 

numerical results and measurements. One interesting 

case could be also  a chain of spheres with a mixed 

coupling between the spheres. First experimental 

results have shown that the detected frequencies are 

strongly affected by such a change in the coupling. 

Therefore, in the future we will try to improve the 

theoretical study in order to solve more realistic 

problems, like a default in a chain.  
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