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Abstract

Consistent with the second-order nonlinear theory,
acoustic fields in the resonator can be represented by
counter-propagating waves which are assumed to not
interact in the resonator volume. These waves are cou-
pled only by boundary conditions. If we suppose that
the waves are slowly varying in space and in time it is
possible to describe the waves by means of the inho-
mogeneous Burgers equation. When the exciting piston
radiates more than one eigen-frequency of the resona-
tor one can control generation of harmonics. Assuming
that the piston radiates only the fundamental and second
eigen-frequency it is possible to get the Whittaker-Hill
equation by means of the Cole-Hopf transformation for
steady-state waves. New asymptotic solutions of this
equation are presented in this work. The approximate
solutions, which enable to describe nonlinear standing
waves in the resonator, are compared with numerical
ones and their validity limits are also discussed in this
paper.

Introduction

Nowadays, we can observe the renewed interest in
nonlinear standing waves. Frequently, the application
of nonlinear standing waves is connected with the high
quality resonators. These resonators enable to accumu-
late large amount of acoustic energy. A number of de-
vices uses the high quality resonators because the sound
waves are so powerful in these resonators that they can
potentially carry out tasks which conventionally require
mechanical moving parts in current technologies (e.g.
the acoustic compressors). In addition the high quality
resonators enable to increase efficiency of the thermoa-
coustic engines (e.g. acoustic refrigerators), see e.g.
[1].
However, using of nonlinear standing waves is limited
by the nonlinear attenuation that causes the acoustic sat-
uration effects. The nonlinear attenuation suppression
enables to increase the quality factor of the resonators.
This paper deals with the method of the active second
harmonic suppression mentioned above both analyti-
cally and numerically. It is known that for this case it is
possible to describe generation of the higher harmonics
by means of the inhomogeneous Burgers equation. The
resonator is driven by a piston whose motion is char-
acterized by two superposed sinusoidal motions. This

problem was treated for stationary state in paper [3].
However, authors of these papers took into account only
inviscid solutions. It means that discontinuities were
contained in their solutions. Unlike these solutions we
present new asymptotic solutions which take into ac-
count dissipative effects. Some of the solutions are also
presented in the spectral form that it is more suitable for
study of generation higher harmonics in the resonators.
The asymptotic solutions are compared with numerical
ones.

Solution of model equations
When describing the nonlinear plane standing waves in
resonator of a constant radius it is possible to start with
the Kuznetsov’s model equation for velocity potentialφ
in the second approximation (see e.g. [7])
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wherex is space coordinate in the direction of the reso-
nator axis,t is time,c0 is the small signal sound speed,
ρ0 is the ambient density of the fluid,γ = cp/cV is
Poisson’s number andcp, or cv is the specific heat un-
der constant pressure, or volume,b = ρ0δ, whereδ is
the diffusivity of sound (see e.g [8]). In this resonator
we can imagine the sound field as a superposition of
simple waves propagating in opposite directions which
are assumed to not interact in the volume of the resona-
tor and they are coupled only by the conditions on the
walls of resonator, see [3]. The next possible simplifi-
cation is when we neglect the fact that the driving piston
is moving and thus the position of the boundary of the
resonator is unvarying with the time. This assumption
is acceptable for very small amplitude of driving piston.
With the above mentioned suppositions we can find the
solution of this equation in the following form

φ =
[
µφ+

(
µx, µt, τ+ = t − x

c0
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−

µφ−
(

µx, µt, τ− = t +
x

c0

)]
, (2)

where µ is a small parameter. Substituting the ex-
pression (2) into Eq. (1) and neglecting the terms of
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the order three and higher and supposing that counter-
propagating waves do not interact we can get, likewise
[6], the following two equations
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We can write for an acoustic velocity

v = v+ − v− , (4)

wherev+ andv− are solutions of Eqs. (3). The length
of the resonator of a constant diameter is labelled byL.
It is valid for angular eigenfrequenciesωn that

ωn =
nπc0

L
, n = 1, 2, 3, ... . (5)

In the case that we consider the harmonic excitation of
the standing waves with the piston at the positionx =
L, we can express the boundary and initial conditions
as follows

v = (v+ − v−)x=0 = 0 , v±(t = 0) = 0 , (6)

v = (v+−v−)x=L = vm1 sin(ωt)+vm2 sin(2ωt+ϕ) ,
(7)

wherevm1 andvm2 are acoustic velocity amplitudes of
the piston andϕ is a phase shift. We assume that a
piston vibrates with the angular frequencyω which is
equal to(2n + 1)-th eigenfrequency of the given reso-
nator, it means thatω = ω2n+1. This assumption causes
that higher harmonic components of an acoustic veloc-
ity are in coincidence with eigenfrequencies. Eqs. (3)
together with conditions (6) and (7) can be solved by
the method of successive approximation, see [6]. On
the basis this method we obtain these model equations

∂v±
∂t

− β

c0
v±

∂v±
∂τ±

− b

2ρ0c
2
0

∂2v±
∂τ2±

= (8)

vm1c0

2L
sin(ωτ±) +

vm2c0

2L
sin(2ωτ± + ϕ) .

Eqs. (8) represent the inhomogeneous Burgers equation
where
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Substituting from Eqs. (9) to Eq. (4) we obtain
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It is more suitable to express Eqs. (8) in the dimen-
sionless form
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Eqs. (11) have the same form for both counter-
propagating waves and consequently we can re-mark
them because of clarity as
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Supposing the stationary state (∂V/∂s = 0) and using
the Cole-Hopf transformation (see e.g. [2], [8])

V =
2
Γ
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U
, (14)

we obtain the following linear differential equation
from Eq. (13)
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2
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4
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]
U = 0 ,

(15)
where comma represents the derivative with respect to
y. Eq. (15) is called the Whittaker-Hill equation (see
[9], [10]). Whenp is not very large we can solve Eq.
(15) by the asymptotic method, see e.g. [11], [10]. Af-
ter using the asymptotic method and the transformation
(14) we get
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In the case thatp is very large it is necessary to modify
the argument of the hyperbolic tangent of the solution
(16) by omitting the 2
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WhenΓ tends to infinity (an ideal fluid) we get from
Eq. (16)
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where sign represents the function signum. The solu-
tion (18) was presented in the paper [3]. Whenp = 0
then the solution (16) and (18) takes the form (see [4])
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and
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(y

2

)
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The expression (19) represents the approximate solu-
tion of the inhomogeneous Burgers equation (see e.g.
[5])
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We can express the solution (16) by means of the
Fourier series
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Then we can write
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WhenΓ → ∞ (ideal fluid) we obtain from (24) this
expression
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. (25)

Whenp = 0 then Eq. (25) takes the form
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With the help expressions (10) and (22) we can write
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Figure 1: Comparison of the asymptotic solution
(solid line) and the numerical solution (dashed line),

Γ = 20, p = 25.

Comparison with numerical results

In this section we deal with comparison between the
asymptotic (analytic) and numerical solutions of the
inhomogeneous Burgers equation for stationary wave
state. The comparison of the asymptotic solution (16)
and numerical one is shown in Figs. 1, 2. We can ob-
serve that the solutions are in a good agreement. In
Fig. 2 it is difficult to distinguish the wave form of the
asymptotic and numerical solution. In order to demon-
strate the contribution of the new asymptotic solution
(16) we compare values of harmonics for various pa-
rametersΓ in Fig. 3. For this reason we used the for-
mula (24) withp = 0. On the basis of this figure it is ob-
vious that the higher harmonics differ significantly for
smaller parametersΓ. Consequently, it is necessary to
use for smaller values ofΓ the asymptotic solution (16).
To illustrate the validity of the spectral solution (24) we
made Fig. 4. Here we compare three wave forms. The
wave form labelled by 1 represents the asymptotic so-
lution (16) forp = 0.5 andΓ = 50 whereas the wave
forms 2 and 3 are obtained from its spectral form (24)
for p = 0 andp = 0.5. We can see that the presented
limitation p ≤ 0.5 enables to get acceptable results. The
wave form of (16) forp = 0 is not depicted here be-
cause differences are not observable.
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Figure 2: Comparison of the asymptotic solution
(solid line) and the numerical solution (dashed line),

Γ = 50, p = 25.
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