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Abstract 
 
   Recently a new theory has been developed which is 
based on a local approximation of a bounded beam by 
means of inhomogeneous waves. The resulting waves 
are called profiled plane waves or simply beams 
formed by the local inhomogeneity approach. The 
main difference between profiled plane waves and the 
classical superposition of inhomogeneous waves to 
form bounded beams [J. Acoust. Soc. Am. 72(2), 585-
590] is that exponentially growing tails in the beam 
profile do not appear and that there is no uncertainty 
as to what inhomogeneous waves are involved in the 
formation. Since a 2D approximation of the 
interaction of ultrasound with materials is not very 
realistic in the case of anisotropic materials due to the 
inherent 3D nature of anisotropic materials, it is 
necessary to extend profiled plane waves to a 3D 
description. Then, a study can be performed on the 
interaction of 3D bounded beams with such materials. 
Special attention is given to beam deformations at 
critical angles of incidence. 
 
Introduction 
 
The Schoch effect [1-8], where a reflected beam is 
considerably transformed due to incidence at the 
Rayleigh angle, has been studied before. From those 
studies it is found that the Fourier method describes 
the phenomenon relatively well and so does the 
inhomogeneous wave theory. The difference between 
both methods is mainly the understanding of the 
physics behind the phenomenon. In the Fourier 
method, the resulting bounded beam is formed as a 
superposition of pure homogeneous plane waves and 
especially their phase-amplitude interactions. So, even 
though the result corresponds more or less to 
experiments, it is hard to imagine what exactly causes 
the deformation. From experiments it is known that it 
is the generation of leaky Rayleigh waves that is the 
cause, but pure plane waves never correspond to the 
complex Rayleigh pole whence it is hard to see what 
really happens. The inhomogeneous wave method on 
the other hand describes the reflected sound as a 
superposition of inhomogeneous waves. If one of 
those inhomogeneous waves corresponds to the 
Rayleigh pole, it stimulates a leaky Rayleigh wave 

very efficiently and is shifted considerably along the 
interface. Hence it is more straithforward to 
understand what is causing the Shoch displacement 
and the Schoch deformations. There are however 
some problems with that inhomogeneous wave 
approach. The current work applies the shift-
properties of inhomogeneous waves and describes 
sound as a local approximation by means of 
inhomogeneous waves. Hence local parts of the sound 
beam can be shifted in the vicinity of the Rayleigh 
angle. 
 
Some problems concerning the Fourier method 
 
It is hard to introduce a new model if the old Fourier 
method seems to be perfect. Hence it is interesting to 
note that it is not perfect. In the Fourier method, a 
bounded beam is formed as a superposition of pure 
homogeneous plane waves all travelling in different 
directions and having an amplitude that is determined 
by means of the Fourier transform of the beam profile 
at a chosen position in space. Then, typically a beam 
is formed as in Figure 1 

 
Figure 1 : A bounded gaussian beam formed with the 

Fourier method. Beam spreading is noticed along 
the propagation direction Z. 

 
This beam looks perfect. However, due to the fact that 
for numerical reasons the bounded beam consists of a 
limited number of pure homogeneous plane waves, 
there are neighbours both along the positive axis and 
along the negative axis. This can be seen in Figure 2 
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Figure 3 : A Gaussian beam profile formed by means 
of a superposition of inhomogeneous waves. The 

appearance of exponentially growing tails is visible 
at more than 4 beamwidths.  

 
The basics of the local inhomogeneity approach 
 
The local inhomogeneity approach is based on the fact 
that amplitude changes for exponential functions can 
be interpreted as parallel position shifts. 

Figure 2 : If a larger area is taken into account 
compared with Figure 1, then it is seen that 

‘neighbors’ appear on the left and on the right and 
that those additional sound fields interact with each 

other along the direction of propagation  

 

 
The neighboring beams interfere with the actual beam 
under consideration whence a sound pattern appears 
that does not correspond to what one considers to be a 
gaussian beam. In most applications this is no big 
problem, but it shows that the method is not perfect 
and therefore cannot forbid the introduction of new 
models. Furthermore it has been shown in [9] that in 
the case of diffraction on rough surfaces there are 
situations where the Fourier method predicts results 
that do not agree with experiments, whereas the 
inhomogeneous wave method does not contain this 
anomaly. Figure 4 : The principle of a spatial shift if the 

amplitude of an exponential function changes.   
  
The local inhomogeneity approach describes the 
profile of a bounded beam locally as an 
inhomogeneous wave. This wave then interacts with a 
considered interface and gets reflected having a 
different amplitude, whence it is shifted in space. 

Some problems concerning the inhomogeneous 
wave theory for bounded beams 
 
The inhomogeneous wave theory builds bounded 
beams by superposing inhomogeneous waves in a 
best-fit approximation. The result is that a bounded 
beam contains the necessary inhomogeneities to 
stimulate leaky Rayleigh waves. Nevertheless there 
are some problems that struggle from the lack of 
determinism. This is because there is freedom of 
choosing what inhomogeneities are part of the 
superposition set. Since nature at this level is 
deterministic, this causes interpretation problems. 
Also, the numerical optimizations that are used to 
form a bounded beam cannot avoid the appearance of 
exponentially growing tails of amplitude at 
considerable distances measured form the center of 
the beam. This can be seen in Figure 3. 

 
The formation of a realistic beam 
 
It is possible to rewrite the wave equation in a form 
where no big changes are to be expected for sound 
waves in the propagation direction. The resulting 
wave equation is called the paraxial wave equation. A 
spreading gaussian beam is a solution of this equation. 
We have extended the description to a 3D description 
of bounded beams travelling in an arbitrary chosen 
propagation direction in 3D space. The mathematical 
description is as follows: 
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An example is shown in Figure 5 for the amplitude 
distribution of such a beam, originating on the left 
side of the figure and propagating in the XZ-plane at 
an angle of 20 degrees measured form the Z-axis. 
 

 
Figure 5 : The propagation of a bounded gaussian 

beam in the paraxial wave description.  
 
Now, if we need to approximate sound near an 
interface, we must not solely reckon with the 
amplitude distribution but also with the local 
propagation direction that differs from spot to spot if 
compared to the direction of propagation at the center 
of the beam. The reason is of course beam spreading. 
This can be better seen in Figure 6 where the real part 
of the complex amplitude is given for the same beam. 
 
Beam deformations at the Rayleigh angle 
 
Here we concentrate on what happens at the Rayleigh 
angle of incidence. The interface between brass and 
water is considered and is given by the XY-plane. In 
Figure 7 the new position in the X-plane after 
reflection is plotted as a function of the old position in 
the XY-plane. The considered bounded beam has a 
physical beam width of 1 cm. It is noticed that spots 
far from the center (0,0) of the incident beam do not 

get displaced at all. Spots closer to the origin get 
displaced. 

 
Figure 6 : The real part of Figure 5. It is seen that the 

propagation direction differs slightly at the sides if 
compared with the center of the beam. 

 
Some spots move to different places, others move to 
the same place, where they can interfere 
constructively or destructively. This is the reason for 
beam deformations like the Schoch effect. 

 
Figure 7 : The new position in the X-direction as a 
function of the original position on the XY-plane at 

the Rayleigh angle of incidence. It is seen that 
strong beam deformations occur inside the beam 

that cause the Schoch displacement.  
 
The resulting bounded beam is then formed by all 
these new spots with corresponding amplitude and 
phase. Our computer program that numerically deals 
with the formation of the reflected beam appears to 
work perfectly except for some small anomalies that 
need to be resolved in the near future. 
 
Conclusions 
 
It is shown that it is possible to describe a bounded 
beam  by means of a local approach in terms of 
inhomogeneous waves. This method does not suffer 
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from indeterminism as in the classical inhomogeneous 
wave approach and does not result in exponentially 
growing tails some distance away from the center of 
the bounded beam. Furthermore the method results in 
a better intuitive understanding of what happens to a 
bounded beam if incidence occurs at the Rayleigh 
angle. It appears that some parts of the bounded beam 
shift to such positions that there is a null zone and a 
second (nonspecular) lobe. Because a description has 
been performed in 3D, calculations can be expected in 
the near future that describe the interaction of 3D 
bounded beams with anisotropic materials. It is 
expected that deformations will occur also in out of 
incidence plane directions. 
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