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Abstract 
   Various models have been proposed for the simula -
tion of classical and nonclassical effects on the propa-
gation of ultrasonic waves in nonlinear mesoscopic 
elastic materials. They usually assume the presence of 
a large number of soft interstices, which are responsi-
ble for the nonlinear and hysteretic behavior of the 
material. In order to simplify the treatment, a so-called 
"PM space" of pairs of preassigned interstice strain 
states and corresponding pressure values, at which 
transitions from one state to the other are assumed to 
take place, is often considered. The relationship 
between the choice of the PM space and the 
consequent nonlinearity is, however, inferred only 
phenomenologically. Starting with the case of only 
one interface, the interdependence among the 
parameters of the model, the input excitation, and the 
spectral contents of the specimen's response is derived 
analytically. The results are related to the strains and 
restoring forces as present in thin bonded interfaces. 
 
Introduction 
   Experiments on e.g. rocks, soil, cement, concrete, 
and damaged elastic materials have revealed evidence 
for nonlinearity, hysteresis, and discrete memory in 
their elastic behavior. These discoveries suggest the 
existence of a nonlinear mesoscopic elasticity (NME) 
universality class, to which all the aforementioned 
materials and others belong [1]. Hence the appearence 
of a variety of nonlinear effects in both quasi-static 
and dynamic experiments, such as the resonance 
frequency downwards shift with increasing excitation 
amplitude, the generation of higher harmonics, and 
the so-called slow dynamics. Various models have 
been proposed for the simulation of these classical and 
nonclassical effects on the propagation of ultrasonic 
waves in nonlinear mesoscopic elastic materials [1-7], 
based on a statistical Preisach-Mayergoitz space [8-
10]. They assume the presence of a large number of 
soft interstitial regions, which are taken to be 
responsible for the nonlinear and hysteretic behavior 
of the material specimen [2-5]. In order to simplify the 
treatment, the so-called "PM space" of pairs of 
preassigned interstice strain states and corresponding 
pressure values, at which transitions from one state to 
the other are assumed to take place, is considered. The 
relationship between the choice of the PM space and 
the consequent nonlinearity is, however, inferred only 
phenomenologically. The investigation of the binding 
forces in adherent joints, in which the interface 

between bonded elements is the primary source of 
nonlinearity [11-13] and the general theoretical 
analysis of the background [14] may allow more 
detailed and realistic conclusions about the originating 
forces of nonclassical nonlinear (NCNL) effects. 
   Starting with the case of only one interstice, the 
interdependence among the parameters of the PM 
model, the input excitation, and the spectral contents 
of the specimen's response is derived analytically. The 
results are related to the strains and restoring forces as 
present in a thin bonded interface. 
 
Spectral analysis of a single rectangular hysteretic 
mesoscopic elastic unit (HMEU) 
   A sample of a linear elastic substrate material 
containing one adherent joint, which is the source of 
nonlinearity, is considered. In contrary to [11-13], the 
bonded interface is described by a rectangular 
hysteretic meso-scopic elastic unit (HMEU) as 
defined e.g. in reference [9] (Fig. 1). The interface 
distance may have only two stable values lo and lc, lo > 
lc, which correspond to a so-called open or closed 
state. If the HMEU is initially in its open state lo and 
an increasing external pressure is applied, the 
interface remains in the open state till the pressure Pc 
is reached, where the interface distance changes 
abruptly to its closed state lc. A further increase of the 
applied pressure does not change the interface 
distance anymore. If now the pressure is decreased 
again, the HMEU remains closed till the pressure Po ≤ 
Pc is reached, where it jumps into its open state again 
and remains there even if the pressure is further 
decreased. The HMEU shows hysteresis if Po < Pc, no 
hysteresis occurs if Po = Pc. The external pressure has, 
because of the balance of forces, the same amount as 
the restoring forces in the interface referred to in [11-
13] but acts into the opposite direction. 
 

 
 

Figure 1 : Rectangular hysteretic mesoscopic elastic 
unit as used in the PM space model [9] 
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   Figure 2 shows a one-dimensional model of the 
HMEU joined to a linear elastic substrate. The HMEU 
is excited by an external sinusoidal force, the pressure 
P = f(τ) = –f0 sinτ . (1) 
Here, τ = ω t is the normalized time, and ω is the ex-
citation frequency. The phase is chosen in agreement 
with the description in references [11-14], i.e. the 
excitation starts with a tension force on the interface 
to increase its distance. The resulting restoring force 
in the interface is F = –P. The force amplitude f0 has 
to be larger than the opening and closing pressures Po 
and Pc, i.e., f0 ≥ |Po|, f0 ≥ |Pc|, because otherwise, the 
interface would remain in its initial state (closed or 
open). The excitation of the HMEU generates elastic 
waves in the joined linear elastic material. As in 
reference [13, 14], the strain of the transmitted waves, 
the response, is represented as a Fourier series: 

εt(X,τ) = ε0 +∑
∞

=

ε
1n

n sin(nτ – nX + ϕn) , (2) 

X = kx is the normalized length coordinate, k = ω/vL 
is the wave number, and vL the sound velocity in the 
linear elastic substrate. The HMEU is at X = 0. 

 

f( )τ

xlinear elastic material

HMEU

l  
Figure 2 : One-dimensional model of a HMEU joined 

to a linear elastic material 
 

a)  

b)  
Figure 3 : External sinusoidal excitation f(τ), opening 
and closing pressures Po and Pc and times τo and τc 
within a cycle are indicated a) starting with a closed 
and b) starting with an open interface, respectively 

 
   Figure 3 shows a qualitative plot of one cycle of the 
sinusoidal excitation f(τ), in which the opening and 

closing pressures Po and Pc as well the corresponding 
opening and closing times τo and τc are indicated 
starting with a closed (Fig. 3a) and with an open (Fig. 
3b) interstice, respectively. The opening and closing 
times τo and τc are related to the pressures Po and Pc by 

Po = –f0 sinτo ,   
od

) df(
τ=ττ

τ  = –f0 cosτo < 0 , (3a) 

Pc = –f0 sinτc ,   
cd

) df(
τ=ττ

τ = –f0 cosτc > 0 , (3b) 

i.e., 0 ≤ τo < π/2, 3π/2 ≤ τo < 2π; π/2 ≤ τc < 3π/2. The 
conditions concerning the derivatives of the force 
ensure that opening occurs for decreasing and closure 
for increasing pressure. Within a cycle, τo ≤ τc for an 
initially closed, and τc ≤ τo for an initially open state. 
   As long as the interface distance is rigid, the 
sinusoidal force is directly transferred into the elastic 
material. At the opening and at the closing pressure 
jumps occur corresponding to the change in strain, 
∆l/lc and ∆l/lo , respectively, depending on if the initial 
state is closed or open. ∆l = lo – lc, is the difference in 
the interface distance between the open and the closed 
state. That is, in case of a closed state as starting 
position, the strain boundary condition 

εt(X=0,τ) = 
11

0

c
f

sinτ –  (4) 

              ∑
ν

∆
{

l
l

c
θ(τ–(τo+2πν)) – ?(τ–(τc+2πν))}  

has to be fulfilled. ν is an integer, θ(x) is the step 
function defined by θ(x) = 0 if x < 0 and θ(x) = 1 if x 
≥ 0, c11 = ρvL

2 is the elastic constant, ρ the density and 
vL the sound velocity in the linear elastic material. If 
we start with an open state the boundary condition is 

εt(X=0,τ) = 
11

0

c
f

sinτ +  (5) 

              ∑
ν

∆
{

l
l

o
θ(τ–(τc+2πν)) – θ(τ–(τo+2πν))} . 

   With the strain boundary conditions (4) and (5), the 
spectral representation (2) of the strain at the HMEU 

εt(X=0,τ) = ε 0 +∑
∞

=

ε
1n

n sin(nτ + ϕn) , (6) 

and the orthogonality relations of the trigonometric 
functions sin(nτ) and cos(nτ) the amplitudes ε n and the 
phases ϕn of the response can be calculated. In case of 
an initially closed state we get 

ε0 = –
π
τ−τ∆

2l
l oc

c
, (7a) 

εn sinϕn = –
cln

l
π
∆ {sin(nτc) – sin(nτo)}  (7b) 

             = –
cln
l 2

π
∆ cos

2
)n( oc τ+τ sin

2
)n( oc τ−τ  , 
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εn cosϕn = 
11

0

c
f

δn1 + 
cln

l
π
∆ {cos(nτc) – cos(nτo)} (7c) 

           = 
11

0

c
f

δn1 – 
cln
l 2

π
∆ sin

2
)n( oc τ+τ sin

2
)n( oc τ−τ  . 

The results for an open state as starting position are 

ε0 = 
π
τ−τ∆

2l
l co

o
, (8a) 

εn sinϕn = 
oln

l
π
∆ {sin(nτo) – sin(nτc)}  (8b) 

             = 
oln
l 2

π
∆ cos

2
)n( co τ+τ sin

2
)n( co τ−τ  , 

εn cosϕn = 
11

0

c
f

δn1 – 
oln

l
π
∆ {cos(nτo) – cos(nτc)} (8c) 

          = 
11

0

c
f

δn1 + 
oln
l 2

π
∆ sin

2
)n( co τ+τ sin

2
)n( co τ−τ  . 

   Eqs. (7) and (8) show, that in general the response 
of a sinusoidally excited rectangular HMEU contains 
the incident frequency, all of its higher harmonics, and 
a static part. The amplitudes ε n and phases ϕn of the 
transmitted waves contain the amplitude of the 
excitation indirectly via the opening and closure times 
τo and τc as a parameter. The parameters of the 
transmitted fundamental frequency additionally 
depend on the ratio of the excitation amplitude and the 
elastic constant c11 in the substrate. Its strain follows 
linearly the excitation without a delay (i.e. ϕ1 = 0) if 
the first term in Eqs. (7c) and (8c) for n=1 dominates. 
   The static strain ε0 during insonification is negative 
if the closed state of the interface is the starting 
position, i.e., the static force pushes apart the surfaces 
forming the HMEU, the mean interface distance 
increases during insonification. Vice versa, if initially 
the HMEU is in its open state, the static force tightens 
together the surfaces, the mean interface distance 
decreases during insonification. 
   The strain amplitudes and phases of the higher 
harmonics (n ≥ 2) are given by 

(ε n)2 = {
c/oln
l 2

π
∆ sin

2
)n( oc τ−τ }2, (9a) 

tanϕn = cot
2

)n( oc τ+τ  ,    (9b) 

ϕn = 
2

)n( oc τ+τ−π  (± νπ ,  ν is an integer). 

The amplitudes en decrease only with 1 over its order 
n, i.e., like the elements of a harmonic series. That is, 
for the response of a rectangular HMEU, a cut-off of 
the Fourier series (2) with only a finite number of 
higher harmonics cannot be a good approximation. 
   For increasing excitation amplitude f0→ ∞ the 
closure time τc moves towards π and the opening time 

τo towards 0 or 2π, depending on the initial state (see 
Fig. 3). This leads to approximate Eqs. (7) and (8): 

ε0 = –
c2l
l∆ , (10a) 

εn sinϕn = –
cln
l 2

π
∆ cos

2
nπ  sin

2
nπ  , (10b) 

εn cosϕn = 
11

0

c
f

δn1 – 
cln
l 2

π
∆ sin

2
nπ  sin

2
nπ  , (10c) 

and         ε0 = 
o2l
l∆ , (11a) 

εn sinϕn = 
oln
l 2

π
∆ cos

2
n

3
π  sin

2
nπ  , (11b) 

εn cosϕn = 
11

0

c
f

δn1 + 
oln
l 2

π
∆ sin

2
n

3
π  sin

2
nπ  , (11c) 

respectively. The results show, that for large excita-
tion amplitudes only odd harmonics are generated. 
The limiting values of the amplitudes and phases of 
the the odd harmonics are 

ε1 = 
11

0

c
f

–
c/ol 
l 2

π
∆  , cosϕ1 = 1, i.e. ϕ1 = 0, (12a) 

ε2n+1 = 
c/ol 1)(2n

l 2
π+

∆ , cosϕ2n+1 = –1, i.e. ϕ2n+1 = π. (12b) 

   No hysteresis occurs if Pc = Po. In this case, Eqs. (3) 
and Fig. 3 yield τc + τo = π and 3π and 0 ≤ τc – τo ≤ π 
and 0 ≤ τo – τc ≤ π for the starting position in the 
closed and in the open state, respectively. This 
simplifies Eqs. (7) and (8), and we get 

εn sinϕn = –
cln
l 2

π
∆ cos

2
nπ sin

2
)n( oc τ−τ  , (13a) 

εn cosϕn = 
11

0

c
f

δn1 – 
cln
l 2

π
∆ sin

2
nπ sin

2
)n( oc τ−τ  , (13b) 

if the initial state is closed and 

εn sinϕn = 
oln
l 2

π
∆ cos

2
n

3
π sin

2
)n( oc τ−τ  , (14a) 

εn cosϕn = 
11

0

c
f

δn1 + 
oln
l 2

π
∆ sin

2
n

3
π sin

2
)n( oc τ−τ  (14b) 

otherwise. In agreement with references [11-14], these 
equations yield two possibilities for the phase of each 
transmitted wave in the non hysteretical case: 
ε2n+1 sinϕ2n+1 = 0 ,   n = 0, 1, 2, .... ; (15a) 
i.e. cosϕ2n+1 = ±1 ,  ϕ2n+1 = 0, π ; 
ε2n cosϕ2n = 0 ,   n = 1, 2, 3, .... ; (15b) 
i.e.  sinϕ2n = ±1 ,  ϕ2n = π/2, 3π/2 . 
The actual values depend on the ratio of the amplitude 
f0 of the excitation force and the opening and closing 
pressure Po = Pc, which determines the difference τo – 
τc. The phase of the transmitted fundamental 
frequency also depends on the ratio of f0 to the elastic 
constant c11 in the substrate. As already pointed out in 
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the general case, it is zero (ϕ1 = 0) if the first term in 
Eqs. (13b) and (14b) for n=1 dominates (in agreement 
with [11-14]). The difference of the normalized 
opening and closure time t o and t c is within the region 
from 0 to π, which leads to the phase of the second 
harmonic ϕ2 = π/2 for an initially closed interface 
(again in agreement with [11-14]) and to ϕ2 = 3π/2 if 
the initial state is open. For large excitation 
amplitudes, f0→ ∞, the amplitudes and phases in the 
response obtain the limiting values given in Eqs. (12), 
i.e. in this limit, the influence of hysteresis disappears. 
 
Strains and restoring forces in thin bonded inter-
faces 
   A thin bonded interface in a component can be 
described by two surfaces of the substrate material 
joined together by interaction forces. In general, the 
binding forces are nonlinear and cause a nonlinear 
transmission of ultrasonic waves. The response to a 
monochromatic excitation contains not only the 
incident frequency but also its higher harmonics. 
Measured amplitudes and phases of the transmitted 
waves may be used to determine the force - distance 
curve in the interface [11-13], or the equivalent, its 
stress - strain relation. 
   In the preceding chapter, the opposite was carried 
out. In contrary to [11-13], the force - distance relation 
of a thin bonded interface in a linear elastic substrate 
material was described by a rectangular HMEU as 
defined e.g. in [9]. For an incident monochromatic 
compressional wave the amplitudes and phases of the 
waves generated in transmission were calculated. The 
general results are given in Eqs. (7) to (9)). 
   The rough description of the force - distance relation 
in the interface as a rectangular HMEU yields the 
general behavior of a nonlinear interface as the 
generation of higher harmonics and a constant contri-
bution, which changes the mean interface distance 
during insonification. But, as can be seen from Eq. 
(9a) and discussions there, the higher harmonics of 
high order are overestimated. To confirm this, we like 
to mention that in our experiments of nonlinear ultra-
sonic transmission through thin bonded interfaces we 
have measured amplitudes of higher harmonics above 
noise only up to the third order [11-13]. The overesti-
mation of the higher harmonics is probably due to the 
"unphysical" edges in the force - distance relation of a 
PM space unit (Fig. 1). The effect might be reduced 
by smoothing the force - distance curve. In particular, 
if the amplitude of the excitation force reaches the 
maximum of the restoring force in the interface [11-
13] the description by a rectangular HMEU can no 
longer be used, even though it yields good results in 
the simulation of wave propagation in materials with a 
large number of nonlinear HMEUs and a convenient 
distribution of different pairs of opening and closure 
pressures and interface distances [e.g. 7]. The integra-

tion over a large number of different HMEUs has a 
smoothing effect. Additionally, for low excitation 
amplitudes which are not capable to cause a jump out 
of the initial state, a rectangular HMEU does not 
reproduce the reflection of waves at interfaces with a 
linear elastic behavior different from that of the sub-
strate, but behaves like a perfect bond. 
 
Summary 
   The spectral contents of the response of a 
sinusoidally excited rectangular HMEU in a linear 
elastic material is derived analytically. The results are 
related to strains and restoring forces in thin bonded 
interfaces. A generalization to the case of many 
hysteretic interstices is planned, either analytically or 
by means of numerical simulations. 
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