WCU 2003, Paris, september 7-10, 2003

Ultrasonic Beam Field Modeling - Fundamentals and Applications in Nondestructive
Evaluation

Martin Spies
Fraunhofer-Institute Zerstorungsfreie Priifverfahren (IZFP)
University of Saarland, Bldg. 37, 66123 Saarbriicken, Germany

Abstract

To ensure the reliability of ultrasonic non-
destructive evaluation techniques for modern
structural materials, the effects of anisotropy
and inhomogeneity and the influence of non-
planar component geometries on ultrasonic wave
propagation have to be taken into account.
In this contribution, fundamentals and appli-
cations of two analytical approaches to three-
dimensional elastic beam field calculation are
presented. Results for both isotropic materials
including curved interfaces and for anisotropic
media like composites and weld material are pre-
sented, covering field profiles for various types of
transducers and the modeling of time-dependent
rf-signals.

Introduction

In ultrasonic nondestructive evaluation use
is made of the physical properties of elas-
tic waves in solids in order to detect defects
and material inhomogeneities. To ensure the
reliability of ultrasonic inspection techniques
for modern structural materials, the effects of
anisotropy and inhomogeneity and the effects
of non-planar component geometries on ultra-
sonic wave propagation have to be taken into
account. In this contribution, fundamentals
and applications of two analytical approaches
to three-dimensional elastic wavefield calcula-
tion are presented, which can applied to model
ultrasound generation, propagation and scatter-
ing in complex-structured materials and compo-
nents.

Based on a mathematical formulation involv-
ing Green’s dyadic displacement tensor function,
appropriate evaluation yields a representation
of the displacement vector of transducer wave-
fields which is convenient for effective numer-
ical computation. With respect to bulk wave
propagation the numerical evaluation of Green’s
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dyadic function - which is particularly tedious
in the anisotropic case - is circumvented by ap-
plying a reciprocity-based approach, valid in
the (point source) far-field. The presented for-
mulation involves characteristic quantities ob-
tained from plane wave theory and appears as
a point source superposition representation in-
cluding the respective point source directivities.
The approach allows to include all aspects rel-
evant to testing simulation for such configura-
tions as far as bulk wave propagation is con-
cerned [1,2].

Among a variety of methods for transducer
field calculation, beam superposition has proven
to be highly efficient for circular single-element
apertures. A Gaussian beam approach for
anisotropic media will be presented, where each
of the Gaussian base functions is furnished with
coefficients fixing the beam waists and their po-
sition. The method is especially suited for beam
field calculations in inhomogeneous media [3,4].

Representative results for both isotropic ma-
terials including curved interfaces and for
anisotropic media like composites and weld ma-
terial are presented, covering field profiles for
various types of transducers and the model-
ing of time-dependent rf-signals. Simulation-
assisted transducer optimization is also illus-
trated for both single-element and multiple-
element probes.

Fundamentals

Equation of Motion

The dynamic behaviour of a linear elastic
medium can be described by the equation of mo-
tion for the displacement vector u. For a homo-
geneous solid it can be written in a general form
according to
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where p is the mass density, V is the gradi-
ent vector, f accounts for the volume force den-
sity and w denotes the circular frequency, if a
time dependence ~ e~ is assumed. The elas-
tic properties of the homogeneous solid are de-
scribed by the fourth rank elastic (stiffness) ten-
sor, which depends on the elastic material con-
stants. A most general representation for this
tensor has been given recently for orthotropic
media of arbitrary orientation [2], which in-
cludes the higher symmetries tetragonal, trans-
versely isotropic, cubic and isotropic as special
cases.

Plane Waves
The plane wave solutions are in the form

u,(R,w) = Utgexp [ K.K-R|, (2)

where K is the propagation direction, U is the
(complex) amplitude and « denotes the wave
type. The determination of the polarization vec-
tors @, and the wave numbers K, can be per-
formed by applying Fourier-transforms with re-
spect to R in terms of

oo .

u(K,w) = / uR,w) e ER PR (3)
— 0o

to the equation of motion (1) for £ = 0. This

yields the dispersion equation

WK w) - aK,w)=0, (4)

where the tilde denotes the transformed quanti-
ties. In this equation, the 3d-space-time-Fourier
representation of u appears as well as the wave
matrix

WEK,w)=K-C-K—o?1, (5)

where I is the unity matrix. The polarization
vectors 1, and the wave numbers K, can be ob-
tained as the eigenvectors and the eigenvalues of
the wave matrix. The latter provide the modu-
lus of phase velocity v, according to v, =| s, |~
with slowness s, = KoK /w.

In anisotropic media, the phase velocity is dif-
ferent from the velocity of energy transport,
which is in the case of lossless materials given
by the group velocity according to

0K ov
w-(VortKg),  ©
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For transversely isotropic and orthotropic ma-
terials with arbitrary spatial orientation, these
quantities have been given previously [1,2].

Bulk Wave Properties

In an isotropic medium, one can distinguish
between the compressional (P) and the horizon-
tally or vertically polarized shear waves (SH
and SV). The decomposition into these three
eigenwaves is based on the orientation of the
polarization vectors with respect to the hori-
zontal plane. In a weakly anisotropic medium,
the plane waves can still be labeled as quasi-P
(qP), with approximately longitudinal polariza-
tion, and quasi-SH (¢SH) and quasi-SV (¢SV),
with approximately transverse polarization. In
a strongly anisotropic medium, there are three
plane waves with mutually orthogonal polariza-
tions in every direction of propagation. These
are designated as qP, ¢S1 and ¢S2 according to
their polarizations when propagated in certain
symmetry directions. The speeds of these waves
are different and vary with direction. Addition-
ally, the directions of phase flow and energy flow
involved with these waves are different, so that
phase and group velocity have to be discerned.

Consideration of Multilayered Media

Each interface between the layers produces re-
flected and refracted waves, which is considered
by evaluating the respective conditions of con-
tinuity. For planar interfaces, Cartesian coor-
dinates with unit vectors {e,, ey e,} can be
used, so that the interface lies in the z-y-plane.
Assuming ideal rigid contact between adjacent
layers requires the continuity of the slownesses
(s-e; continuous, i = z,y, 'Snell’s law’) and the
continuity of the particle displacements and the
normal tractions according to

UIHI+Z URauRa
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e, T +Z e, T = Z e, T (8)
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where T designates the stress tensor. From
these equations, the amplitudes U®® and U"®
of the reflected and transmitted waves of type
a can be determined in dependence of the in-
cident amplitude U’. In the case of non-planar
interfaces, these boundary conditions have to be
applied locally.



The local structure of an inhomogeneous
medium can be described by dividing it into sev-
eral layers, each of them having different elas-
tic properties. In the case of continuously vary-
ing elastic material properties a large number of
such fictitious layers has to be introduced, while
in the case of layered media the original struc-
ture can be incorporated into the applied model
as it is.

Analytical Modeling Approaches

Point Source Superposition

The basis for the elastodynamic beam field cal-
culation procedure presented here is the mathe-
matical formulation of Huygens’ principle given
by Pao and Varatharajulu [5]. For wave radia-
tion by an isolated vibrating body or a fixed sur-
face enclosing a source, where each point on the
surface S of the body vibrates with the same an-
gular frequency w, the displacement vector out-
side the surface S can be written as

um = [ [ {o

- o IR.w)]-GARw)dS.  (9)

uR’,w)- [n-B(AR,w)]

where - with T being the stress tensor - the trac-
tion n-T and the displacement u at this surface
act as sources of the generated wavefield. With
AR= (E—E/), G and X are Green’s dyadic and
triadic functions, whose components represent
the displacement and stress field, respectively,
at position R generated by three mutually per-
pendicular (point) forces acting at R on surface
S.

For evaluating transducer radiation, S is as-
sumed to lie in the z-y-plane of a Cartesian co-
ordinate system, i.e. n =e,. In selecting the
Green’s tensor functions entering in Eq. (9)
one has two options. The first one is to choose
the free-space functions as has been done e.g.
by Guo and Achenbach [6], where, however,
u(R’,w) is an unknown function which has to be
determined. Here, the Green’s functions for the
elastic half-space are chosen, where - considering
the surface to be stress-free - the triadic stress-
tensor function accordingly fulfills the boundary
condition that

)
e

hal f — g ’ (10)
z=0
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so that

(11)
- / /S le. - TR, w)| - 6" (AR, w) dS'

follows, where the dyadic Green’s function for
the half-space has accordingly been introduced.

From Ref. 7, where the far-field radiation of
vibrating point sources in anisotropic media is
considered, a far-field expression for gh‘”f ac-
counting for the bulk wave contributions can be
inferred according to

G (AR, w) = (12)

> 8, (K(AR)) i, (K(AR)) % ,

where 11, and K, = K,K designate the (plane
wave) polarization vector and the wave vector of
wavetype «, respectively. The Cartesian compo-
nents of vector g are the directivities for trans-
versely (in z- or y-direction) and normally (in z-
direction) acting point sources on the stress-free
surface. g and u,, - as well as the group velocity
vector ¢, - are functions of the wave propagation
direction K that produces an energy contribu-
tion along the spatial direction AR. An efficient
numerical evaluation scheme for the K(@)—
relationship has been described in Ref. 2. Using
Eq. (12) and defining the surface traction

i(ﬂlaw) =€, g(ﬂlaw) ’ (13)
Eq. (11) finally leads to

)= [ | SR g,

oiwR—R'|/ca(AR)
4 | AR |

(K(AR))

i, (K(AR)) ds’, (14)
which is valid in the far-field of the point source,
and which can be appplied to model trans-
ducer generated bulk wave fields in isotropic and
anisotropic media. To circumvent the intricate
the determination of g using Green’s function,
a method based on the reciprocity theorem is
applied [8].

Assuming a traction whose magnitude is
zero outside the transducer aperture and unity
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within, the integration in Eq. (14) has to be per-
formed over the transducer aperture. Numeri-
cal integration on the basis of an equally spaced
rectangular grid can be applied for planar sur-
faces, with grid points separated at a distance
of less than half a wavelength to fulfil the sam-
pling theorem. For curved - e.g. cylindrical or
spherical - surfaces a respective projection of a
planar grid onto the curved surfaces is applied.
If multiple element transducers are considered,
the aperture is accordingly structured with trac-
tions of zero or unity magnitude, respectively,
where also additional phase delays can be intro-
duced.

The results obtained for continuous wave
displacement fields using this computational
scheme are valid even in the near-field of the
beam [2]. On the basis of Eq. (14), an efficient
far-field approximation has been derived in [9],
which is particularly useful in view of low calcu-
lation times.

In order to determine transducer beam fields
for broadband input signals, a straight-forward
computational approach for modeling of tran-
sient signals is applied, where the harmonic (cw)
solution is calculated at many frequencies and
then numerically Fourier transform this data
into the time domain. In this approach, a func-
tion for the frequency spectrum of the trans-
ducer input signal has to be selected, e.g. to
properly model an experimental input signal.

In modeling the insonification into a compo-
nent using immersion technique, the evaluation
of Eq. (14) is performed accordingly. The par-
ticle displacement is calculated at the interface
grid points and used as the prescribed displace-
ment distribution at this interface. Taking into
account the respective boundary conditions, this
distribution is then propagated from the inter-
face into the material as described above. The
same principle holds for defects and other dis-
conituities with consideration of the appropriate
point source directivities. Based on Kirchhoff’s
theory, this has been presented previously in Ref
10.

Gaussian Beam Superposition

To simulate the propagation of transducer gen-
erated wave fields, a procedure used to get a se-
ries solution to a boundary value problem can
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be applied [11]. Starting with the equation of
motion (f = 0), a Gaussian solution used as a
base function is established, then the relevant
boundary conditions are expressed in terms of a
set of base functions.

For anisotropic materials, such Gaussian base
functions have been given in [3]. The complete
field solution is written as a superposition of
these functions with different parameters U, and
M, according to

N
u,(R,w) = Z Un 0,expfiK, - R]-Aq n - (15)
n=1
jw
exp| ———— C,-M
P 2, -K) * 7

Co BB

n(ﬂ) 'Qa ’

)

where C, = (¢, K)R—(R-K)c,, N is the num-
ber of GB-functions required. In this representa-
tion, A, accounts for the geometrical spread-
ing as the beam moves through the medium,
while the matrix ﬂa,n determines the Gaussian
shape of the beam [3]. Both quantities depend
on M,, which are the complex beam waist pa-
rameters of the GB-functions; further, U, are
the (complex) amplitudes. Equation (15) has
to satisfy the boundary conditions by properly
determining the coefficients M,, and U, of the
base functions. In the following, a ten-term
GB-solution is applied using coefficients given
in [11].

In the derivation of the Gaussian beam se-
ries solution, harmonic time dependence was as-
sumed. However, in practical application gener-
ally beams of finite pulse length are of interest;
these pulsed solutions are obained as already de-
scribed in the previous section.

Application to Transducer Optimization
For industrial components of arbitrary shape,
the transducer fields strongly depend on the
material or interface curvatures and the cou-
pling conditions. Thus, simulation of trans-
ducer sound fields is most useful for evaluating
measured signals and for designing transducers
which are optimized for the respective set-up.
Due to the large number of transducer parame-
ters and their complex influence on the sound
field, experimental work can thus be signifi-
cantly reduced, which is useful for both single-
element and multiple element transducers.
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Figure 1 : Geometry of the optimized piezoelement
applied to focus to a depth of 6 mm (expanded scale
along z-axis).

Immersion Probe for Cylindrical Component In-
spection

The component to be inspected is a steel pipe
with an inner diameter of 34 mm and a wall
thickness of 20 mm. Using immersion technique,
the pipe is assumed to be tested for defects from
the interior, with high sensitivity in a range from
4 mm to 8 mm depth. Usually, the inspection of
such components is performed using socalled bi-
focal transducers. Such line-focusing probes ex-
hibit beam fields which are focused in the axial
plane, but diverging in the radial plane, with an
additional focal spot being generated due to the
component’s curvature. To improve the inspec-
tion performance, a transducer has been elabo-
rated, which - operated at 10 MHz frequency -
three-dimensionally focusses the beam field to a
depth of 6 mm. In the optimzation, both fre-
quency and the piezoelement dimensions have
been varied, while a fixed immersion distance of
15 mm has been assumed according to the in-
ner pipe diameter. Details on the optimization
procedure can be found in Ref. 12.

As shown in Fig. 1, the calculated shape of the
rectangular piezoelement of 7 x 7 mm? is char-
acterized by a convex curvature of 80 mm radius
in the radial plane, and a concave curvature in
the axial plane (radius 40 mm). The beam field
calculated for this transducer configuration is
shown in Fig. 2. The desired coverage of the
depth range from 4 mm to 8§ mm is achieved
within an amplitude range between 0 dB and -
6 dB as indicated. The amplitude continuously
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Figure 2 : Beam field representations for the opti-
mized transducer in the radial (left) and axial (right)
plane (frequency 10 MHz, immersion distance 15
mm).

decreases, at a depth of 15 mm it is still ap-
proximately -15 dB with respect to the absolute
maximum value. For the optimized probe, the
absolute maximum of the beam field is approxi-
mately 5 times as high as compared to the abso-
lute maximum produced by a commercial line-
focusing transducer of similar dimensions [12].

Phased Array on Composite Material

The anisotropic elastic behaviour of modern
structural materials like composites and the re-
sulting wave propagation characteristics lead to
considerable difficulties in applying conventional
ultrasonic inspection procedures. However, the
effects of beam field skewing and distortion can
be considerably compensated by proper focusing
and steering of array transducer fields.

As an example, the beam fields generated
by a conventional angle-beam array transducer
have been evaluated and optimized for a layered
[03/90]-composite material. The elastic charac-
teristics of this material are described in Ref. 13.
The 2 MHz-probe - applied to generate (quasi-
) longitudinal waves - consists of a rectangular
transducer (16x8 mm?) mounted on a perspex
wegde. The wedge angle is 19.6° resulting in an
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Figure 3 : Schematic sketch of a conventional angle-
beam array transducer. Beam focusing to the point
(xf,2¢) is accomplished by delay time calculation us-
ing the anisotropic material’s elastic properties.

insonification angle of 45° in ferritic steel. In
calculating the delay times for the 16 elements,
the directionally dependent ultrasonic velocities
have been taken into consideration. As schemat-
ically shown in Fig. 3, the delay times are deter-
mined for each element in order to focus the gen-
erated beam to a focal point with coordinates
(zf,zr) in the plane of insonification.

Figure 4 displays polar plots of the probe’s di-
rectivity patterns - calculated at a distance of
r = 40 mm for various focal modes. The solid
line represents the directivities without time-
delayed excitation of the elements. As expected,
the insonification angle is different from 45°,
which is obtained in ferritic steel. However,
point focusing allows to direct the beam field to
various angles and even improve the field am-
plitudes, as represented by the dashed curves
in Fig. 4. Thus, the difficulties usually expe-
rienced in inspecting anisotropic materials, i.e.
beam skewing and distortion effects, can be con-
siderably minimized.

Application to Inspection Simulation
The ultrasonic signals picked up by a trans-

ducer in a - as an example - pulse-echo
(PE)inspection experiment are determined in
the following way. First, the transducer-

generated displacement distribution is calcu-
lated at the position of the scatterer using Eq.
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Figure 4 : Polar plots of the beam field directiv-
ity patterns calculated at a distance of r = 40 mm
for various focal modes at indicated in the legend
(composite’s layers parallel to the surface).

(14), then the scattered wave field is determined
as described in detail in [10]. The (time-domain)
signal detected by the transducer is finally deter-
mined using Auld’s reciprocity theorem which
exploits the displacement and traction at the
scatterer’s position in presence and absence of
the scatterer, respectively [14]. A similar proce-
dure can be applied on the basis of Eq. (15).

The far-field expressions derived in [9] for pla-
nar vibrating sources can be used to perform ap-
proximate calculations. Thus, a simple expres-
sion can be formulated e.g. for the amplitude
dynamic curves (ADC) measured in a pulse-echo
inspection experiment. Although the influence
of the traction-free material surface on the trans-
ducer radiation characteristics as well as the par-
ticular boundary conditions at the scatterer are
neglected in using this relationship, the results
compare well with those obtained on the basis
of Eq. (14) [9].

Amplitude dynamic curves in composites

Two unidirectionally carbon-fiber reinforced
composite specimens with fibers being orien-
tated at 15° (No. 1) and 75° (No. 2) to the sur-
face, respectively, have been examined. These
specimens were supplied with a number of 3
mm and 5 mm flat-bottom holes (FBH) at var-
ious depths. The pulse-echo experiments have
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Figure 5 : Simulated and measured pulse-echo am-
plitude dynamic curves for 5 mm flat-bottomed holes
in a unidirectional composite. The fibers are aligned
at an angle of 15° (top, defect depth 15 mm) and 75°
(bottom, defect depth 30 mm) to the surface. Note
the different scan paths (z = 0 mm marks the lateral
defect position).

been performed with a piezoelectric normal-
transducer of 2.25 MHz frequency and 6.3 mm
in diameter (Krautkramer MSW-QC 2,25), gen-
erating (quasi-) longitudinal waves. Further de-
tails on the measurements can be found in [15].
For these inspection parameters, ADCs have
been simulated using the far-field relationships
given in Ref. 9. As an example, Figure 5 shows
the results obtained for 5 mm FBHs, which were
located in a depth of 15 mm in specimen No.
1 and in a depth of 30 mm in specimen No.
2. In the latter case, the measured ADC does
not drop below -30 dB, due to the experimental
noise level. In these results, the effects of wave
field spreading and skewing are more or less ap-
parent. Good agreement between the simulated
and the measured ADCs is obtained, with dif-
ferences in the order of about 2 to 3 dB.

Inspection of Austenitic Welds
Simulation with respect to the optimization
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Figure 6 : Beam field of an 80°-angle beam trans-
ducer insonifying a V-weld. The probe’s index point
is located at 160 mm, while the weld is located at ap-
prox. 200 mm. The logarithmic scaling ranges down
to - 24 dB.

of ultrasonic inspections is in the following ex-
emplified for a V-weld in an austenitic plate
with a surface connected crack-like defect. Mi-
crographs have been used to establish a model
to describe the inhomogeneous weld microstruc-
ture [16]. The weld is divided into several layers,
each of them being characterized by a grain ori-
entation according to this model and exhibiting
transversely isotropic elastic behaviour. First,
the wave fields passing through the weld, as
generated by commercial ultrasonic angle beam
transducers, have been determined applying the
GB-method, details of the modeling procedure
can be found in [4]. The calculations reveal
that for a standard inspection procedure using
longitudinal waves at 45°, 60° or 70° incidence
the desired inspection volume may be properly
covered. However, operating the transducers in
pulse-echo mode, due to the anisotropy of the
weld, the ultrasonic waves reflected at the de-
fect - positioned at the weld flank - travel at
different paths and can thus not be detected.

A variation of the angle of incidence reveals,
that an optimal detection will occur at 80°, in
this case the defect is hit perpendicularly. The
respective beam field for a circular transducer
(frequency 4 MHz, diameter 9 mm) mounted on
a wedge is exemplarily shown in Fig. 6. The
bending of the beam field due to the weld’s mi-
crostructure occurs mainly in the weld’s mid-
region. Quantitative information on the de-
fect signal is gained by calculating RF-ultrasonic
signals usually acquired in a pulse-echo experi-
ment. The simulated RF-data for the optimized
angle of incidence, where only the specularly re-
flected longitudinal wave has been taken into
consideration, can be further evaluated. Con-
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sidering the probe coordinates and the ultra-
sonic velocities using Synthetic Aperture Focus-
ing Techniques, the efficiency of the optimized
inspection set-up versus the standard type in-
spection is revealed [16].

Summary

Analytical approaches to model ultrasonic
nondestructive evaluation in general allow for
reasonable calculation times. These models can
be employed to consider the various wave phe-
nomena separately, which is desirable from the
practical point of view. Since approximations
are applied, the approaches have to be selected
according to the respective problem of interest.
The presented methods are three-dimensional
approaches and have been verified in compar-
ison with experimental results previously. On
standard PCs, the calculation times for the GB
solution are in the order of seconds. For fre-
quencies in the range from 0.5 to 5 MHz, which
is usually of interest in ultrasonic NDT, point
source superposition provides simulation results
within minutes, while calculations based on the
far-field approximation can be also performed
within seconds. The reviewed simulation meth-
ods can be efficiently employed to clearify wave
propagation effects and to optimize transducers
as well as inspection procedures.
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