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Abstract 

   There are cases of major discrepancies between the 

field predicted by a finite element approximation and 

the field derived from the exact theory, the so-called 

“locking effect” being a typical example. This can be 

tracked to deficiency of interpolation functions. The 

present paper deals with the approach, which does 

not need an explicit formulation of the interpolation 

functions. Instead, it makes use of a representative 

set of problems resolved in the frameworks of the 

exact theory and a neural network, which is trained 

on this set. The elemental stiffness matrix computed 

by this method is free of the above drawbacks. 

Key words: finite element, stiffness matrix, neural 

network. 

 

1. Introduction 

   The derivations of the finite element stiffness 

matrix assume dependence between the nodal values 

of the field and those inside the element through the 

explicit interpolation functions and a subsequent 

resort to either equilibrium equations or energy 

considerations. Though the interpolation functions 

are specified so as to comply with approximation 

theories, they are not always capable of describing in 

a satisfactory way the field under consideration. In 

fact, there are cases of major discrepancies between 

the field predicted by the exact theory and such finite 

element approximations. 

In the context of elasticity, one of the typical 

phenomena is the “shear locking”, which predicts 

extremely large values of the strain energy for 

slender finite elements, in a complete disagreement 

with the exact theory (see, for example, [1, 2]). 

   This paper deals with an alternative way of 

computation of the elemental stiffness matrix, which 

is based on a neural network trained on a 

representative set of problems resolved in the 

frameworks of the exact theory. The neural network 

performs a linear association task and the stiffness 

matrix of the element follows as the weight matrix of 

the neural network. This algorithm may also be 

formulated in terms of the pseudoinverse transform 

[3, 4]. 

 This approach does not require an explicit 

formulation of the interpolation functions, enabling 

one to incorporate in a direct way the results of the 

exact theory. Consequently, the stiffness matrix 

obtained is free of the drawbacks brought in by the 

interpolation techniques. 

   We first consider a problem of beam to illustrate 

the method in a simple way and then deal with a 

plane rectangular elastic element, focusing in 

particular on the locking phenomenon. 

 

2. Illustrative problem 

   Consider a problem, which highlights the above 

neural computing by recovering the well-known 

result for the stiffness matrix of the elementary beam. 

The beam element is characterized by four nodal 

forces {q}=[q1 q2 q3 q4]
T
 and four nodal 

displacements {w}=[w1 w2 w3 w4]
T
 with the stiffness 

matrix [K] defined by 

 

{q}=[K] {w}     

      (1) 

 

   We consider {w} and {q} in (1) as a linear neural 

network input and output, respectively, and formulate 

the following problems of the beam loading: 1) 

cantilever subjected to a concentrated force at its left 

end, 2) cantilever subjected to a concentrated force at 

its right end, 3) hinged beam under a uniform 

distributed load, 4) beam built-in at its right end and 

hinged at its right end under a uniform distributed 

load. 

   Under proper normalization of the external forces 

and the beam length, the exact solutions for these 

problems provide the following “input-output” pairs: 

 

{w1}=[1/3 -1/2 0 0]T 

{q1}=[1 0 -1 1]
T
 

 

{w2}=[0 0 -1/3 -1/2]
T
 

{q2}=[1 1 -1 0]
T
 

      

      (2) 

{w3}=[0 1/24 0 -1/24]
T
 

{q3}=[0 1/12 0 -1/12]
T
 

 

 

{w4}=[0 0 0 -1/48]
T
 

{q4}=[-1/8 -1/24 1/8 -1/12]
T
, 

 

respectively. 

   The rigid body motion of the element must cause 

zero nodal forces. Thus, additional training patterns 

may be stated as 

 

{w5}=[1 0 1 0]
T
 

{q5}=[0 0 0 0]
T 
 

      

      (3) 

{w6}=[-1 1 0 1]
T
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{q6}=[0 0 0 0]
T
 

 

which describe the translation and rotation of the 

element as a rigid body, respectively. 

   Formulating, as the neural network paradigm 

suggests, the total input [P] and total output [T] as 

 

[P]=[{w1} {w2} {w3} {w4} {w5} {w6}] 

[T]=[{q1} {q2} {q3} {q4} {q5} {q6}]  

      (4) 

 

we get the basic relation as 

 

[T]=[W][P]+[b]     

      (5) 

 

where [W] is the unknown weight matrix and [b] is 

the unknown bias matrix. If the initial forces are 

absent, then [b]=0, and [W] is equivalent to the 

stiffness matrix [K]. In general, the best solution to 

(5) (in the least squares sense) is given by 

 

[W]=[T][P]*   ([b]=0)    

      (6) 

 

where [P]* is the pseudoinverse of [P] (for a theory 

of pseudoinverse transform the reader is referred to 

[3, 4]). 

   Computing (6), we get the weight matrix [W] as 

follows: 

 

[W]=

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

− 
 − 
 − − −
 − 

   

      (7) 

 

which precisely coincides with the stiffness matrix 

[K] of the beam element. 

   The iterative Widrow-Hoff algorithm for training 

the ADALINE neural network [3] is a useful 

alternative to (6), if the computation of [P]* is 

difficult. Indeed, in the case at hand this algorithm 

also provides (7) as the weight matrix.  

   It should be noted that applications of the least 

squares method (LMS) to the finite element 

techniques are well-known (see, for example, [5]). 

These applications deal with solutions to the 

governing equations by the LSM in the frameworks 

of the classic formulation, which involves 

interpolation functions, and are completely different 

from the present approach, assuming a representative 

set of training patterns and a neural network. 

 

3. Plane elasticity 

   The above problem, being one-dimensional, does 

not display “locking”. To this end, consider plane 

elastic elements [1, 2]. The strain matrix {ε} and the 

nodal displacement matrix {w} are related by 

 

{ε}=[B]{w}     

      (8) 

 

with [B] being the strain-displacement matrix.  In 

terms of [B] the stiffness matrix [K] is given by 

 

 

[K]=
T

S
[B] [H][B]dxdy∫∫    

      (9) 

 

where S is the elemental area and [H] the matrix of 

elastic constants, which for anisotropic materials 

under the plane stress takes the form 

 

[H]=

2

2

2

2

n n 0

n 1 0

0 0 m(1 n )

ν 
 ν 
 − ν 

2

2 2E /(1 n )− ν  

      (10) 

 

Here E denotes Young’s modulus and ν Poisson’s 

ratio, n=E1/E2, m=G1/G2, and subscripts 1 and 2 

denote the in-plane response of the strata and that in 

a direction normal to the strata, respectively. 

   Under the assumption of the constant strain within 

the element, it is possible to replace (8) by the 

relation 

 

{ε}o=[B]o{w}     

      (11) 

 

where {ε}o and [B]o are the averaged values and (9) 

by the relation 

 

[K]= [B]o
T
[H] [B]oS    

      (12) 

 

For a rectangular element, which has eight degrees of 

freedom, the above matrices {ε}, [B] and {w} are (3 

x 1), (3 x 8) and (8 x 1), respectively. 

   Consider the element of the size 2a and 2b and 

denote the displacement along xi by ui. We include 

the following typical cases of loading in the training 

set: 1) uniform tension in the two directions, 2) 

uniform shear, 3) bending described by the boundary 

condition u1(x1=b)=- u1(x1=-b), 4) bending described 

by the boundary condition u1(x1=0, x2=0)=0, 

u2(x1=0)=0, 5) tension in one direction and 

compression in the other one, 6) the same but the 

directions are reversed. The problems are amenable 
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to the exact solution, for example, with the help of 

Airy’s function. The solutions are 

 

{ε}1=[5/4 -5/4 0]
T 

{w}1=[-y z y z y –z –y –z]
T
, y=5/8, z=1/8 

 

{ε}2=[0 0 -5/2]
T
 

{w}2=[y z y –z –y –z –y z]
T
, y=1/8, z=5/8 

 

{ε}3=[6x2 -3x2/2 0]
T
 

{w}3=[y –z –y –z y –z –y -z]
T
, y=3/10, z=303/400 

      

      (13) 

{ε}4=[x2 0 0]
T
 

{w}4=[y –z –y –z y –z –y -z]
T
, y=1/20, z=1/8 

 

{ε}5=[-3/2 39/4 0]
T
  

{w}5=[y –z –y –z –y z y z]
T
, y=3/4, z=39/40 

 

{ε}6=[-39/4 3/2 0]
T
 

{w}6=[q –g –q –g –q g q g]
T
, q=39/8,g=3/20 

 

   Rigid body motions correspond to vanishing 

strains, which provides 

 

{ε}7=[0 0 0]
T
 

{w}7=[1 0 1 0 1 0 1 0]
T
 

      

      (14) 

{ε}8=[0 0 0]
T
 

{w}8=[0 1 0 1 0 1 0 1]
T
 

 

   After integrating the strains over the quarter of the 

element to arrive at the averaged values, the above 

relations state eight "input-output" training pairs 

 

 

[P]=[{w1} {w2} {w3} {w4} {w5} {w6} {w7} {w8}] 

[T]=[{ε 1} {ε 2} {ε 3} {ε 4} {ε 5} {ε 6} {ε 7} {ε 8}] 

      

      (15) 

       

  

   This enables one to find the [B]o-matrix with the 

help of (6) as the weight matrix of the neural network 

which performs the best correspondence between [P] 

and [T] as given by (15). Then the stiffness matrix 

[K] follows form (12). It should be noted that the 

versatility of the finite element depends on the 

training set in a direct way. Generally, the set should 

be as comprehensive as possible. 

   In what follows we consider a material with 

n=m=1, 
2

2 2E /(1 n )− ν =1 (isotropic case) and ν =1/4. 

Calculations show that for the case a≈b, both, the 

classic approach and the present one, provide values 

of the elemental strain energy in a reasonable 

agreement with the exact results. For a slender 

element the situation is completely different. Table 1 

given in the Appendix shows that the classic element 

fails in the cases 3 and 4, exhibiting a profound 

locking, while the finite element derived by the 

present approach is free of this effect. 

 

 

4. Conclusions 

   The presented approach does not require an explicit 

formulation of the interpolation functions and 

enables one to incorporate in a direct way the 

relevant results of the exact theory. Consequently, 

the stiffness matrix obtained is free of the drawbacks 

brought in by the interpolation techniques. Though a 

comprehensive training set would lead to a more 

versatile finite element, by formulating a specialized 

training set one may arrive at a stiffness matrix, 

particularly suitable for the problem at hand. 
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Appendix 
Table 1. Strain energy of the element, 2a=1/5, 2b=1. 

 

Pattern Classic Present Exact 

1 0.25 0.25 0.25 

2 0.25 0.25 0.25 

3 0.130 0.009 0.012 

4 0.0037 0.0003 0.0004 

5 9.6 9.6 9.6 

6 9.6 9.6 9.6 
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