
Asymmetry

SPECTRUM OF ACOUSTIC CAVITATION

A.O. Maksimov, E.V. Sosedko
Laboratory of Nonlinear Dynamical Systems, Pacific Oceanological Institute, Vladivostok, RUSSIA

maksimov@poi.dvo.ru

Abstract
Individual spectral bands of the cavitation

radiation are characterized by a finite width and even
by a definite shape. So far, the nature of these
measurable characteristics has been poorly
understood. A step toward the generalization of the
conventional models was the inclusion of noise, i.e.,
the analysis of the nonlinear dynamics of a bubble in
the field of an intense harmonic signal in the presence
of a random component. The effect of fluctuations
associated with the random field component is found
to be most pronounced in the vicinity of the
bifurcation values of the field amplitude and detuning,
these values corresponding to changes in the number
of stable oscillatory states of a bubble. Behavior of the
bubble in this region is characterized by a significant
increase in the duration of transition processes and by
an essentially non-Gaussian distribution of
fluctuations in the vicinity of stable trajectories.

Introduction
The spectrum of the radiation caused by acoustic

cavitation in liquid has the form of single bands rising
above a noise base [1]. Individual spectral bands of
the cavitation radiation are characterized by a finite
width and even by a definite shape (see Figure 1). The
positions of the bands correspond to harmonics,
subharmonics, and ultrasubharmonics of the excitation
frequency. The presence of single bands in the
spectrum is related to the strongly nonlinear dynamics
of single gas bubbles that occur in the field of an
intense acoustic wave. The commonly accepted
explanation for the presence of the noise base is the
generation of short pulses accompanying the collapse
of single inclusions. The specific features of the band
shown in Figure 1 (for definiteness we consider the
spectrum in the vicinity of the fundamental
frequency), namely, the narrow components rising
over a wide base, the asymmetric base deviating from
the Lorentz form retain its shape in widely different
experimental conditions [1-2].

The real spectrum of the acoustic pressure that
causes oscillation of single bubbles in the sheet
noticeably differs from the spectrum used in
theoretical calculations, which usually takes into
account only the fundamental harmonic. A step
toward the generalization of the conventional model
was the inclusion of noise, i.e., the analysis of the
nonlinear dynamics of a bubble in the field of an
intense harmonic signal in the presence of a random
component of much lower intensity [3].

Definitions and equations
In the Rayleigh–Plesset equation describing radial

pulsation of a gas bubble, the presence of a noise
component is taken into account by an additional term
entering into the expression for an external field
acting upon the bubble:
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Here, 0P , 0ρ , P , 0R , R  represent the equilibrium
and current values of the pressure, the density of the

Figure 1. Spectrum of acoustic cavitation [1]
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liquid, and the bubble radius;��� pm, and ωp are the
amplitude and frequency of the high-power harmonic
signal component, respectively, and pN(t) is the
random noise, γ is the polytropic index; and δ is the
damping constant. In what follows, we will use the
simplest model, assuming that pN(t) can be described
as a Gaussian delta-correlated random process.
Solving Eq. (1) with the use of an asymptotic
expansion in the small parameter |R–R0|/R0<<1 we
arrive at a system of “reduced” equations for slowly
varying amplitudes a and phases ϑ . 
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Here, ε is a small dimensionless parameter introduced
for describing the order of the nonlinear terms and

1 ( , , )u a tϑ  and 2 ( , , )u a tϑ  are the higher-order terms
of the expansion. Correct to third-order terms, we can
perform the analysis in the vicinities of the
fundamental resonance, the first and second
harmonics, and the first and second subharmonics.
Generally speaking, the structure of the “reduced”
equations in each of these regions should be different.
Expressing this system in terms of the variables
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The system of Eqs. (2) is an example of stochastic
differential equations. The description of the evolution
of this system is based on the solution of the Einstein–
Fokker–Planck (EFP) equation for the probability
density of the dynamic states

( , ) ( - ( )) ( - ( ))W u v u u t v v tδ δ=< > , where the
averaging is performed over the random force
ensemble [3]. For the case under study, the EFP
equation has the form
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In fact, it is easy to obtain a stationary solution to
Eq. (3) in the region of the existence of a single

solution to Eq. (2) in the absence of random force
(P(u•,v•)=0, Q(u•,v•)=0) and this solution has a
Gaussian form 
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In addition, special consideration should be given to
the bistability region of nonlinear bubble pulsation, in
particular, to the vicinities of the bifurcation curves of
the dynamic system (2), i.e., the curves on which the
denominator in Eqs. (5) becomes zero. This problem
has been investigated in [2].
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Spectral density
The shape of the radiation spectrum is exclusively

determined by the contribution of the autocorrelation
function of the radiation. Substituting the asymptotic
expansion for the bubble radius and retaining only the
leading terms, we separate naturally the coherent and
incoherent contributions to the spectral density. 
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Outside the vicinity of the singularities,
(mentioned above), where the amplitude and phase
fluctuations can be described by the Ornstein–
Zernicke process [4], the expression for the incoherent
contribution to the spectral density can be reduced to
the following form (for definiteness, we select the
vicinity ω ~ ωp):
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is reduced when the nonlinear terms are neglected. An
important fact is that the magnitude and the halfwidth
of the spectral density of radiation are determined by
the stability of the nonlinear dynamic state of the
bubble, because 11 22 12 21( - ) b b b b  is the product of the
corresponding linear stability exponents of system (2)

in the absence of noise. The effect of fluctuations
related to the random component of the acoustic field
is most significant in the vicinity of the bubble wall
bifurcations, which correspond to a change in the
number of stable oscillatory states of the bubble.

Figure 2. Spectral density of the bubble radiation NS
( 2( / )N nS D Sδ= ) as a function of the dimensionless
variables 0( ) /pη ω δ= − Ω  and ( ) /pω ω δ∆ = −  at

1.4m kp p= . The values of η  are plotted along the y-
axis, and ∆  is represented by the x-axis.

Numerical method
To overcome the deficiency of analytical solution

based on the asymptotic expansion, we have studied
the regime corresponding to bistable oscillatory states
of the bubble by numerical techniques [4]. The results
of solving Eq. (1) are presented in the form of the
radius-time dependence ( )0 0( ) ( ( ) )x t R t R R≡ −  and a
map of the phase portraits. Conventional approach in
analyzing bifurcations in the nonlinear oscillations of
a bubble is to study dependence of the maximum
radius of a bubble on the control parameters. This
characteristic is not a Poincaré map during the initial
period of time, when the evolution is determined by
the transition processes, but it becomes such a map
upon attaining the steady-state regime. Convenience
of this variable is related to the fact that, considered as
a function of detuning, it describes the amplitude-
frequency characteristic of the bubble pulsation in the
approximation of weak nonlinearity, which makes
possible direct comparison of the numerical data to
the results obtained by approximate analytical
methods.

Figure 3 shows the results of calculation of the
distribution density of the maximum radius ( )max ,f x η

for the values of detuning 2 2
0 0( ) / 1pRη ω= Ω −  from

the interval (–0.26, 0.2) in the region of the 
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Figure 3. The distribution density of maximum radius
of bubble pulsation

fundamental resonance, quality factor 0 /Q δ= Ω =10;
external field amplitude 0( / )mp p s≡ = 1,1; and noise

intensity 2 2 1/ 2
0( ) 0.1Np P = . The distribution density is

defined as ( )max max( , ) ( )f x N x N xη ≡  ∆   , where
N(xmax) is the number of values of the maximum
radius in the interval max max[ / 2, / 2]x x x x− ∆ + ∆ ,

( )max max 0 0/x R R R≡ − , and N is the total number of

maxR  values in the time interval under consideration
(in this case, 400 periods). For the reference, thin lines
depict the Gaussian distributions characterized by the
same mean values and dispersions as the xmax series
for which the distribution function is constructed. In
the (x, η) plane, the markers indicate the values of xmax
(maximum radius) for the steady-state oscillations in
the function absence of a random force, which can be
compared to the known data.

One should note, that obtained results describe
bubble dynamics for a fixed realization of the random
variable Np . In order to find stable, mean
characteristics one should average the distribution
density over an ensemble of realization of the random
variable. To avoid this cumbersome procedure we
consider self-averaged quantities, in particular, K – an
entropy

max max
0

( ) ln[ ( ) ]
N

i i

i
K xf x f x x

=

= − ∆ ∆∑ ,              (8)

here the summation is carried out over all values of
the maximum radius in the series produced by
numerical solution of Eq. (1).

Conclusions
We can suggest the following physical

interpretation of the results presented above. Outside
the region of bistability, the effect of the noise
component on the character of pulsation is small, the
duration of transition processes is short, and the
fluctuations quite rapidly begin to follow the Gaussian
distribution, in agreement with the results of the 

Figure 4. The entropy as function of the detuning
2 2
0 0( ) / 1pRη ω= Ω −  for the bistability region of

bubble oscillations. The dots indicate the numerical
result at the same values for the parameters as used for
calculation of the distribution density (Figure 3).

analytical description. In the case of two stable states,
the character of pulsation of the bubble—at least,
within a not too long interval of time (400 periods)—
significantly differs from the physical pattern adopted
in [3], when the system sufficiently rapidly reaches
one of the two equilibrium states, performs small
fluctuations at this equilibrium position, and exhibits
rare transitions between the two equilibrium states. As
can be seen from Figure 3, the distribution function
has a complicated profile and significantly differs
from Gaussian, which is evidence of a low stability of
pulsation and a significant increase in the duration of
transition processes.
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