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Abstract 
 
   Recent advances in ultrasonic wave propagation in 
layered arbitrarily anisotropic media are reviewed. 
New exact and asymptotic approaches based on an 
efficient and stable recursive compliance/stiffness 
matrix method are presented. In the asymptotic 
method, the total stiffness matrix for the system of 
multilayers is calculated with arbitrary precision by 
subdividing them into thin sublayers and combining 
recursively the thin layer stiffness matrices which are 
obtained based on a simple second-order thin layer 
approximation. A semi-space substrate is substituted 
for by a finite thickness layer loaded by a perfectly 
matched attenuating layer. Both methods are applied 
to direct and inverse problems of ultrasonic 
characterization of multidirectional composites using   
the double-through-transmission method and time-
resolved line focus acoustic microscopy. The double-
through-transmission measurements and simulations 
show that the transmission amplitude is highly 
dependent on ply orientation and angle of incidence. 
As another example surface acoustic wave 
propagation in a multilayered piezoelectric medium is 
considered. To do this the effective permittivity and 
general Green's functions for a layered piezoelectric 
system on a substrate are formulated in terms of 
stiffness and compliance matrices. 
 
Introduction 
 
   The topic of elastic wave propagation in layered 
media has enjoyed significant attention for many 
decades due to the wealth of its applications to 
seismology, acoustics and nondestructive evaluation 
(NDE) [1-29]. In most ultrasonic applications the 
transfer matrix method formulated by the Stroh 
representation [5, 9] or the Christoffel equation [10, 
11] has been utilized. However the method becomes 
inherently unstable due to the coexistence of 
exponentially decaying and growing matrix elements, 
a problem that has been known as �exponential 
dichotomy� in the numerical solution of linear matrix 
differential equations [12].  To overcome the 
computational instabilities, a reformulation based on 
the higher-order minors of the transfer matrix (delta 
matrix method) has been developed for isotropic 
layered systems [4, 13] and has also been proposed for 
monoclinic layers [13]. But for the general anisotropic 

medium this method is impractical due to its 
inefficiency and complexity. Various other 
computationally robust methods have been developed 
such as the global matrix method [7, 8], the 
reflectivity method [14-16] (also called the invariant 
embedding method) and its variations based on 
surface impedance matrices [17]. Recently an 
alternative stable computation method for general 
anisotropic layered media based on the stiffness 
matrix method [18-21] has been developed. In this 
method, the generalized surface compliance/stiffness 
matrix for a layered substrate and the total 
compliance/stiffness matrix for a multilayered system 
are calculated recursively from the layer stiffness 
matrices. The method retains the efficiency and 
simplicity of the transfer matrix method but is stable. 
More recently the recursive stiffness matrix method 
has been further simplified using an explicit second 
order asymptotic representation [22, 23]. 
     One of the important applications for ultrasonic 
waves in layered media is quantitative nondestructive 
evaluation of multidirectional composites.  
Multidirectional composites are highly anisotropic 
multilayered structures, which significantly 
complicates ultrasonic wave propagation [24-27]. 
Selection of ultrasonic inspection parameters is very 
difficult for these structures without comprehensive 
modeling for optimization of the experimental 
conditions and data interpretation. In this paper, recent 
advances in ultrasonic wave propagation in layered 
arbitrarily anisotropic media are reviewed and their 
applications to surface acoustic wave analysis and 
composite material characterization are discussed.     
 
Ultrasonic models for layered anisotropic media  
 
Exact transfer and stiffness matrices for an 
anisotropic layer 
 
     Let us consider generally anisotropic piezoelectric 
media as shown in Fig.1. We define the general 
displacement U (=[u, φ]T) and general stress T =[σ, 

D3]T vectors and the state vector 







=

T
U

ξ , where u and  

σ are the particle displacement and normal stress 
vectors respectively, and φ and D3 are the electrical 
potential and normal electric displacement 
respectively. The general solution for the state vector  
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Figure 1: A layered general anisotropic structure and 
coordinate system. The z-axis is normal to the layer 
surface. The top and bottom surfaces can be free or 
bounded by the substrates.  
 
can be represented in the form )()( xkti xez −ωξ , where ω 
is angular frequency, kx is the wave number along the 
x-axis. The governing equation for the state vector is 
[5, 21] 

              Aξξ i
dz
d = , (1) 

 
where A is the fundamental acoustic tensor; it is 
explicitly given in Appendix A. For a single 
homogeneous layer, e.g., the mth layer, the differential 
equation (1) has the well-known exponential transfer 
matrix solution B, which relates the state vector at the 
layer top ( zm ) to that at the layer bottom  ( zm-1 ) 
surface 
 
         )()( 1−= mm zz Bξξ , mHie AB = , (2) 
 
where Hm=zm-zm-1 is the thickness of the mth layer.  To 
compute B requires finding the eigenvalues kz and 
eigenvector matrix W of the fundamental matrix A. 
For general anisotropic material with piezoelectricity 
there are eight eigenvalues and eigenvectors 
representing eight plane harmonic waves. Four waves 
propagate (or exponentially decay) in the +z direction 
and we denote the corresponding eigenvalues as 

),,,(diag 4321 +++++ = zzzzz kkkkIβ  (I(4×4) is a unit 
matrix) and the corresponding eigenvector matrix as 
W+ =[P+ D+]T, where P+ corresponds to the general 
displacement portion and D+ to the general stress 
portion in the eigenvector matrix W+. The other four 
waves propagate (or exponentially decay) in the �z 
direction and we denote their eigenvalues as 

),,,(diag 4321 −−−−− = zzzzz kkkkIβ and the eigenvector 

matrix as [ ]T−−− = DPW . The canonical 
(diagonalized) form of the matrix A is represented as  
                    

1

1

−

+−

+−

+

−

+−

+−
−
































==

DD
PP

β0
0β

DD
PP

WWβA
z

z
z

,   (3) 

where 







= +

−

z

z
z β0

0β
β . From Eqs. (2) and (3) it 

follows that B 1−= WW β mz Hie  and we can obtain  
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where matrix 

],,,diag[)44(
4321

mzmzmzmz HikHikHikHik eeee
±±±± ±±±±± =× IH

. In Eq. (4), we combine the diagonal matrix +H  with 
W and 1)( −−H  with 1−W .  
    To improve the computational stability, we 
reformulate the transfer matrix in the form of a 
stiffness matrix [20], which relates displacements on 
both sides of the layer to the stress  
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  (5) 

 
We also define an inverse compliance matrix S:  
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The symmetry properties of the compliance/stiffness 
matrix are given in ref. 21. 
   For a semi-infinite medium, one can define a surface 
stiffness  matrix SK  which relates the general 
displacement to the general stress at the surface 
 
    ±

±
± = UKT S ,  1)( −±±± = PDK S , (7) 

 
where +

SK  is the surface stiffness matrix for a bottom 

half space and −
SK  is the surface stiffness matrix for a 

top half space. For a layer with attenuation or for 
nonhomogeneous wave propagation, as the thickness 
of the layer approaches infinity, both matrices ±H  

z 

zm 
zm-1  
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Substrate 0 
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become zero; then from Eqs.(5, 7) one can see that the 
submatrices K11 and K22  approach the surface 
stiffness matrices −

SK  and +
SK  respectively.   

 
Asymptotic transfer and stiffness matrices for an 
anisotropic layer 
 
    In this section we briefly review a much simpler 
solution of the problem [22]. First let us consider the 
asymptotic solution for a thin layer whose thickness h 
is much less than the ultrasonic wavelength λ  
( 1/ <<λh ). A second-order asymptotic solution for 
the transfer matrix has been proposed by Rokhlin and 
Huang [28], which can be written as   
 

         )
2

()
2

( 1
II AIAIB hihi +−= − . (8) 

 
The advantage of the asymptotic transfer matrix 
representation Eq. (8) is that it has the same symmetry 
properties as the exact transfer matrix and the wave 
solution obtained with the transfer matrix (8) satisfies 
energy balance for wave interaction with a thin layer. 
As was shown in ref. 28, this is due inherently to the 
representation of the transfer matrix IIB  in the form 
(8).  
     The asymptotic solution (8) is valid only for a thin 
layer. For a thick layer with thickness Hm, one can 
subdivide it into N thin layers and the total asymptotic 
transfer matrix )( ma HB  for a thick layer is obtained 
as the product of all thin layer transfer matrices.  For 
computational efficiency, one should select N as a 
power of 2 (N=2n), then for a homogeneous layer Hm 
the number of matrix multiplications is n if Ba is 
calculated recursively as  
 
           )1()1()( −−= J

a
J

a
J

a BBB , (9) 
 
where (J) =(1),�.(n) is a running index; 

)(II
)0( ha BB = ; )2()( hj

a
J

a BB = is the total 
asymptotic transfer matrix at step J; 

)2( 1)1( hj
a

J
a

−− = BB  and Hm =2nh. The solution 
obtained thus converges to the exact solution [22]. 
    To assure computational stability of the solution we 
have to employ the asymptotic stiffness matrix. The 
asymptotic stiffness matrix for a thin layer is obtained 
using the relation between the transfer B and the 
stiffness K matrices [20]; the corresponding second-
order stiffness matrix IIK  is :  
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 (10) 
where the submatrices ijΓ are combinations of the 
elastic constants cijk (Appendix A). The asymptotic 
stiffness matrix elements are simple explicit functions 
of the elastic and piezoelectric properties. To find the 
stiffness matrix of a thick layer, as discussed above 
the thick layer Hm is subdivided into N=2n thin layers 
h= Hm /N and the total stiffness matrix of the thick 
layer is obtained from the thin layer stiffness matrix 
using a recursive algorithm [22]: 
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 (11) 
where J=1,�n; J

aK  is the total asymptotic stiffness 
matrix after J recursive operations and 0

ijK  are the 
submatrices of the thin layer asymptotic stiffness 
matrix IIK . As in the case of the asymptotic transfer 
matrix, to obtain the total stiffness matrix for N=2n 
subdivisions only n recursive operations are required.   
   To illustrate the convergence of the asymptotic 
transfer and stiffness matrices, we define the relative 
error E(B)/E(K) as the average relative error between 
the asymptotic and exact transfer/stiffness matrix 
elements (B[i, j]/K[i, j]) 
 

∑∑
= =

−=
8

1

8

1

],[/]),[],[(
64
1)(

i j
a jijijiE BBBB ,  (12a) 

∑∑
= =

−=
8

1

8

1

],[/]),[],[(
64
1)(

i j
a jijijiE KKKK .   (12b) 

 
The �exact� transfer and stiffness matrices are 
obtained by calculating the eigenvectors and 
eigenvalues of matrix A using Eqs (4 and 5). To 
investigate the convergence rate and the accumulation 
of round-off error with increase of number of 
subdivisions N=2n, we plot in Fig. 2 the average 
relative error E(B) and E(K) versus number of 
recursive operations n at 1 GHz for a ZnO layer with 
thickness H=1 µm. Both E(B) and E(K) are averaged 
for a phase velocity (ω/kx) in the range between 1 and 
20 mm/µs. The calculation is performed with double 
precision. One can see that initially the relative error 
decreases exponentially as (Hm/2n)2 with increase of 
number of recursive operations n. This is because with 
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increase of n the thickness of the subdivision layers h 
=Hm/2n exponentially decreases for a given Hm, which 
leads to exponential decrease of the truncation error. 
As the number of recursive operations reaches a 
critical point, the error starts to increase due to the 
accumulation of round-off error resulting from 
multiplication of a large number of asymptotic 
transfer matrices.  
    The total relative error is the sum of the truncation 
and round-off errors. The total relative errors 

)(BE , )(KE for both matrices are obtained as  
 

nn eE 24)( 00 += −αB , nn eE 44)( 00 += −αK ,   (13) 
 
where 2

3
1

0 )(
qs

m
V
fHπα =  and 0e = 1610− . The minimum 

of the average relative error corresponds to the 
optimum number nopt of recursive operations. It is 
obtained from Eq. (13):  
 

)log1()(
0

0
23

1
opt en α+=B , 

0

0
24

1
opt log)( en α=K . (14) 

 
The growth rate of the round-off error is proportional 
to 2n for the transfer matrix. The growth rate of the 
stiffness matrix round-off error is proportional to (2n)2 

and is twice that of the transfer matrix. To take 
advantage of both methods (the smaller round-off 
error for the transfer matrix and the stability of the 
stiffness matrix for larger fHm) we propose a hybrid 
(B/K) method. In this method, we start the recursive 
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Figure 2:  Simulated (solid lines calculated using Eq. 
13) and actual relative error for stiffness (K) and 
transfer (B) matrices for a ZnO layer at fH=1 
GHz*µm. The number of layer subdivisions N is 2n. 
The relative error averaged in the phase velocity 
(ω/kx) range between 1.0 and 20.0mm/µs. The dotted 
line represents the result calculated by the hybrid 
method with δ=10. The predicted optimum recursive 
operations (nopt) using Eq. 14 are indicated by the 
dashed lines. 
 

procedure using the asymptotic transfer matrix (Eqs. 7 
and 8). At each recursive step we calculate the 
average of the matrix Ba diagonal elements as a 
control parameter 

           ∑
=

=
8

1
),(

8
1

i
a iiBδ . (15) 

 
If nonhomogeneous waves exist, the nondimensional 
parameter δ starts to increase exponentially with the 
number of recursive operations j (the layer thickness 
Hj=2jh). When δ exceeds a pre-selected threshold δc, 
we convert the transfer matrix obtained to the stiffness 
matrix, and then continue the recursive operation 
algorithm using the stiffness matrix recursive 
algorithm (Eq. 11). The optimum value of the 
threshold δc is around 10. The hybrid method has the 
same round-off error as the transfer matrix and is 
unconditionally stable.  
 
Asymptotic surface stiffness matrix for a semispace  
  
     The exact wave propagation solution for a 
semispace is obtained using Eq. (7). To use the 
asymptotic method, one may replace the semispace by 
a thick layer with appropriate wave attenuations. For a 
sufficiently thick layer, the propagating waves inside 
the layer attenuate and the layer stiffness matrix 
converges to the surface stiffness matrix; however this 
method could require an excessive number of 
recursive operations. For this reason it is 
advantageous to accelerate the decay of wave 
amplitudes in the finite thickness layer. To do so we 
replace the substrate by a layer with artificial 
attenuation (perfectly-matched layer (PML)), which 
however does not change the surface stiffness matrix.  
The second-order asymptotic transfer BII and stiffness 
KII matrices solution for such a medium are obtained 
by the replacement of h by h*=hβ. β is a complex 
parameter (1.0, βi) with 0<βi <0.5. Because β is 
complex all acoustic wave energy transmitted into the 
PML is attenuated. 
 
Recursive algorithm to obtain the total compliance/ 
stiffness matrix 
 
     After the stiffness matrix mK  for each layer in the 
multilayered structure has been obtained using either 
the exact formulation or asymptotic solutions, the 
global stiffness matrix for the multilayered structure is 
calculated using a recursive algorithm   
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where MK  are the asymptotic or exact total stiffness 
matrices for the bottom m layers, 1−M

ijK  are the 
submatrices of the total stiffness matrix for the bottom 
m-1 layers, m

ijK  are the submatrices of the mth layer 
stiffness matrix. Alternatively, the top surface 
stiffness SK  for the total system may be obtained 

directly by calculating recursively only the M
11K  

= M
SK  submatrix.  

 
Applications to ultrasonic characterization of 
multilayered anisotropic media  
 
Angle beam through transmission: experiment and 
simulation  
 
    Ultrasonic evaluation of composites is usually 
performed by the immersion method in reflection or 
through-transmission modes.  At oblique incidence of 
ultrasonic waves on a multidirectional composite, the 
reflection/transmission phenomena become very 
complicated [27] due to the appearance of 
nontransmittance zones. The plane wave reflection 
and transmission coefficients are related to the total 
compliance matrix of the composite laminate as [20] 
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where the 33

ijS are the (3, 3) elements in the 

submatrices )33( ×ijS  of the total (6×6) compliance 
matrix S for the composite structure and 

)/(cos ff Viωρθ=Λ , fρ  is the fluid density, and  
Vf is the acoustic velocity in the fluid, θ is the incident 
angle. 
    Here we will show an example of ultrasonic wave 
transmission through a [0/45/90/-45]2s composite in 
the double-through-transmission mode shown 
schematically in Figure 3. The ultrasonic signal is 
transmitted through the multiply composite sample 
immersed in the fluid, then reflected from the plane 
reflector and returned to the transducer. The sample is 
rotated in two planes, thus angles of incidence and 
plane of incidence can be continuously changed. We 
consider the back reflector as a mirror with Figure 3b 
showing the wave travel path used in the model. 
Accounting for the phase delay in fluid as shown in 
Fig. 3b, one can obtain the time-domain voltage 
output [27]:  

x
dkdkLki

xbxtxt
ti

out kdekTkTkdeFtV zzz ′′′′Φ= ∫ ∫
∞+

∞−

′′++′−∞+

∞−

)2()()()()()( ωω ω , 

 (19)
  
where L is the distance between the surfaces of the 
transducer and back reflector, d is the thickness of the 

sample. 22)/( xfz kVk −= ω . zx kk ′′ ,  and 

zx kk ′′′′ ,  are the wave numbers in the coordinate 
systems rotated from the axis z (Figure 3b) by θi 
(primed) and 2θi  (double primed) respectively ( z ′ is 
the normal to the transducer face). )(ωF  is the 
frequency response of the transmitter/receiver; 

)( '
xt kΦ is the angular response of the transducer.  
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Figure 3: (a) Schematic diagram of the self-reference 
bulk wave method. (b) Equivalent representation of 
the measurement used for modeling. The dashed lines 
indicate the mirror reflection of the back propagation 
path. Mirror plane is indicated by the broken vertical 
line.   
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Figure 4: Experimental (open circles) and theoretical 
(solid lines) time domain signal of different incident 
angles. The rotation angle α  is 25o and center 
frequency of the signals is 2.25 MHz. 
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They are experimentally determined by inverting the 
measured reflection signal from a homogeneous 
semispace such as a block of aluminum. )( xt kT  and 

)( xb kT ′′ are the plane wave transmission coefficients 
through the layer for the wave incident from fluid on 
the layer top or bottom respectively.  
     Figure 4 compares experimental (dots) and 
computed (solid lines) time domain signals for several 
incident angles. The incident wave signal has center 
frequency 2.25MHz.  At normal incidence (0o), the 
multiple reflections in the sample are clearly 
identified. At incident angles close to normal 
incidence (<7o), the multilayered composite is similar 
to an isotropic plate. At 14o incident angle, the 
transmitted signal reaches the first maximum and 
clearly shows dispersion and strong distortion. Above 
14o the amplitude drops, reaching the noise level at 
30o. The transmitted signal amplitude reaches an 
additional maximum at 50o whereas spectrum analysis 
shows the center transmitted frequency at about 2 
MHz. A large transmission peak appears in the 
incident angle range between 45o to 55o, where the 
energy is transmitted in the composite by the slow 
transverse wave. Above 60o incident angle, the 
transmission amplitude drops again and approaches to 
zero.  
 
Time-resolved line focus acoustic microscopy: 
experiment and simulation 
 
    As another example we will compare modeling and 
experimental results for the line focus acoustic 
microscopy. A cylindrically shaped line focus 
transducer is utilized with the coupling fluid between 
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Figure 5: Line focus microscopy signature at different 
rotation angles for the unidirectional composite plate 
with thickness 2.4mm.The cylindrical transducer with 
PVDF film has center frequency 6MHz and focus 
length 24.5mm.  Solid lines are experiment; doted 
lines are simulations. 
 

transducer and specimen. For line focus time-resolved 
acoustic microscopy, the response can be represented 
as [26] 
 

∫ ∫
∞+

∞−
= M f deRPdeFtzV

d
V

i
ti

out

θ θω
ω θωθθωω

0

cos2 0
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 (20)   
where )(ωF  is the frequency and )(θP  is the pupil 
function of the transducer in the pulse echo mode, Mθ  
is the semi-aperture angle of the acoustic lens and d0 
is the defocus distance. ),( ωθR  is the reflection 
coefficient from the sample,  
    Our experiments were performed with the line 
focus transducer, developed at NIST [29], which has 
center frequency 6MHz, focus length 24.5mm and 
half aperture angle 32o. Figure 5 shows the acoustic 
microscopy response for a unidirectional composite 
plate for different lens orientation with relation to the 
fiber direction. In these figures solid lines are 
experiment and dotted lines are theory. For a 
unidirectional composite as shown in Figure 5, the 
signals in the response can be put in three categories 
[26]: 1) normal specular reflections which correspond 
to normal incident rays (L1 and L2); 2) lateral waves 
which correspond to rays incident at critical angles 
(La); 3) bulk wave reflections which correspond to 
rays mode-converted and reflected from the bottom 
surface (LS2, S1S1, S1S2; L denotes longitudinal and 
S1, S2 denote fast and slow quasi-transverse waves). 
The time delays of the normal specular reflections (L1 
and L2) are used to determine the elastic constant C33 
(=C22). These signals are not shifted in the time 
domain with rotation angle. The time delays and 
amplitudes of these lateral wave and bulk wave 
reflections are significantly dependent on the rotation 
angle. Because the half aperture angle of our 
transducer is 32o, only the longitudinal lateral wave 
(La) has been observed. The leaky surface wave does 
not exist  [26] in these materials since its speed 
increases above the transverse wave speed due to the 
fluid loading effect. The lamina elastic constants have 
been obtained by a least-squares minimization 
algorithm to match the computed and experimental 
signatures [26].  
 
Surface acoustic wave analysis  
 
     As an additional example let us consider a method 
to compute ultrasonic wave propagation in a layered 
piezoelectric medium. For this it is advantageous to 
use the generalized Green�s function G and effective 
permittivity effε . They are determined from the total 
surface stiffness matrix for the layered substrate or the 
total stiffness matrix for a layered plate. Here we use 
the layered semispace with surface transducers as an 
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example. For simplicity, we use the total surface 
compliance matrix 1−= SS KS  and decompose it into 

mechanical f
SS (3×3), electric e

SS (1×1) and coupling 

fe
SS (3×1), ef

SS (1×3) submatrices: 







= e

S
ef
S

fe
S

f
S

S SS
SS

S . 

Taking into account the electric field in the vacuum 
above the top semi-space, where the electric potential 
satisfies the Laplace equation, the generalized surface 
Green�s function can be written as  
 


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




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



−
+−+=

e
S

ef
S
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SSSSG )1( 00 , (21)

  
where 0ε  is the vacuum permittivity and 

)1/(1 0
e
Sx Sk εα −= . The effective surface 

permittivity effε can be obtained using the G44 element 

of the Green�s function as   
 

     
e
Sxx

xeff SkGk
k 11)( 0

44

−== εε , (22) 

 
    As an example, the asymptotic method has been 
compared to the �exact� method in the calculation of 
the surface wave velocity. The free surface acoustic 
wave velocity for a ZnO/diamond/silicon layered 
semi-space shown in Figure 6 has been calculated as 
poles of the exact and asymptotic surface Green�s 
function (21). The thicknesses of ZnO and diamond 
layers are 1µm and 20 µm respectively. The semi-
space Si substrate is represented by the PML layer 

Figure 6: Surface wave velocity calculation for the 
ZnO/diamond/silicon layered semi-space using exact 
(solid lines) and asymptotic (open circles) surface 
stiffness matrix. Thickness of ZnO and diamond 
layers is 1 µm and 20 µm respectively.  In exact 
computation, Si is a semispace. In the asymptotic 

calculation, the semispace Si substrate is represented 
by the PML layer.   
with β=1.0+0.3i. The relative error of the asymptotic 
solution is around 1010− .     
 
 
Conclusions  
 
   Recent progress in modeling of ultrasonic wave 
propagation in layered arbitrarily anisotropic media 
has been reviewed. The efficient and stable recursive 
compliance/stiffness matrix method has been 
discussed. Using a simple second-order thin layer 
asymptotic expansion, the recursive stiffness matrix 
method has been further simplified and its 
computational efficiency has been improved. The 
asymptotic representation of the sublayers is an 
explicit function of the layer elastic constants and 
thickness; it maintains the energy balance of the 
propagating wave and system homogeneity, i. e., 
assures absence of scattering on the subdivided layer 
interfaces. For a semi-space substrate, a perfect 
matching layer (PML) method has been introduced 
and implemented. Both methods are computationally 
efficient and stable for arbitrarily layer thickness and 
frequency. Applications of these methods to surface 
acoustic wave analysis and ultrasonic characterization 
of multidirectional composite have been discussed. 
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Appendix: Fundamental acoustic tensor A 
 
The fundamental acoustic tensor A for a piezoelectric 
medium is represented as [5, 21] 
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where ρ  is the density of the solid  and ikΓ  are the 

44 × matrices  formed from the elastic constants cijkl, 
piezoelectric stress constants eijk and dielectric 
permittivity constants ikε : 
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X is the inverse matrix of 33Γ : 1

33
−= ΓX . I′  is the 

4×4 identity matrix but with zero (4,4) element.  
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