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Abstract
The ultrasonic waves propagation through a plane

linear elastic structure with a local and symmetrical gra-
dient of acoustical velocities is investigated. We assume
that the wavelength is smaller than the characteristic
lengths of the velocities variation. Thus, the longitu-
dinal and transversal wave equations in the inhomoge-
neous zone are decoupled as in an homogeneous layer
and, for an exponential velocity profile, the solutions
are given by a linear combination of Hankel functions.
The effect of relative amplitudes of gradients and of rel-
ative thickness of the inhomogeneous layer, on the posi-
tion of the cutoff-frequencies of guided modes existing
in the structure, is examined. Numerical results show
a shift of the cutoff-frequencies compared to the homo-
geneous layer, which is positive for increasing gradients
and negative for decreasing gradients.

Introduction

Many articles deal with inhomogeneous fluid media
such as the atmosphere and the ocean (Brekhovskikh(1) ,
Heller(2)), but only few papers are published about ul-
trasonic waves propagation in an inhomogeneous linear
elastic solid (Robins(4)).

Among them, a lot of papers present numerical
approached methods as the Thomson-Haskell matrix
(which consists to approximate an inhomogeneous
layer by a series of thin homogeneous layers) and the
propagator formalism (which consists to replace the dif-
ferential equations describing the waves propagation in
an inhomogeneous layer by a matrix relating waves am-
plitudes at the top and the bottom of the layer).

In this paper, we consider a linear elastic plane struc-
ture of constant density, which presents a local and sym-
metrical gradient of longitudinal and transversal veloci-
ties. We are interested in the effect of relative ampli-
tudes of the gradients and of relative thickness of the in-
homogenous layer, on the guided modes of the structure
and particularly, on the position of cutoff-frequencies.
Our study is based on the assumption that the ultrasonic
wavelength is smaller than the characteristic lengths of
the velocities variation. This assumption is identical
to the high-frequency approximation which appears in
Richards’s paper(3).

In these conditions, each of longitudinal and
transversal waves potentials verify a wave equation
with a velocity varying with depth. It is possible to

obtain analytical solutions for these equations. So, we
have chosen exponential velocity profiles.

Writing the appropriate jump-conditions for the dis-
placements and stresses at each interface, we obtain the
dispersion equation of the guided modes of the struc-
ture and particularly the cutoff-frequencies one. Their
position depends on the relative amplitudes of gradients
and the relative thickness of the inhomogeneous zone.

1 Wave equations and study of guided modes
We consider the structure presented in Figure 1. We

denote:� the density,
LP and
TP the longitudinal and
transversal waves velocities in the homogeneous layersS10 andS20 and(1� �) l their thicknesses.
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Figure 1: Geometry of the model for positive
gradients

In theS1 andS2 layers of�l thickness (� 2 [0; 1℄),
the velocities vary exponentially with depth:
L(z) = 
LP e aL(l�jzj), 
T (z) = 
TP e aT (l�jzj).
Then, 
L0 = 
LP e aL l and 
T0 = 
TP e aT l are
the velocities values inz = 0. These values are
maximal if aL andaT are positive and minimal ifaL
andaT are negative.
We consider a problem of plane deformations, the
motion being restricted to the (xOz) plane.

In the S10 and S20 layers, the longitudinal and
transversal potentials satisfy the wave equations:8>><>>: �2��t2 � 
2LP�� = 0;�2 �t2 � 
2TP� = 0; (1)
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and the solutions are given by:8>>>>>>><>>>>>>>:
�01 = hA01L 
os(kLz(z + �l)) +B01L sin(kLz(z + �l))ie i(kxx�!t) 01 = hA01T 
os(kTz(z + �l)) +B01T sin(kTz(z + �l))ie i(kxx�!t)

(2)

for theS10 layer, and8>>>>>>><>>>>>>>:
�02 = hA02L 
os(kLz(z � �l)) +B02L sin(kLz(z � �l))ie i(kxx�!t) 02 = hA02T 
os(kTz(z � �l)) +B02T sin(kTz(z � �l))ie i(kxx�!t)

(3)

for theS20 layer.

In a recent paper (Vlasie(5)), we have proved that, at
high frequencies, in theS1 andS2 layers, the longitudi-
nal and transversal potentials satisfy wave equations:8>><>>: �2��t2 � 
2L(z)�� = 0;�2 �t2 � 
2T (z)� = 0: (4)

So, for the exponential profile previously defined, the
solutions are written as follows:8<: �1 = [A1L H(1)�L (�L1) +B1L H(2)�L (�L1)℄e i(kxx�!t) 1 = [A1T H(1)�T (�T1) +B1T H(2)�T (�T1)℄e i(kxx�!t)

(5)

for theS1 layer, and8<: �2 = [A2L H(1)�L (�L2) +B2L H(2)�L (�L2)℄ei(kxx�!t) 2 = [A2T H(1)�T (�T2) +B2T H(2)�T (�T2)℄ei(kxx�!t)
(6)

for theS2 layer,

where�L = kxaL , �T = kxaT , �L1 = !aL
LP e�aL(z+l),�T1 = !aT 
TP e�aT (z+l), �L2 = !aL
LP eaL(z�l),�T2 = !aT 
TP eaT (z�l).

Writing (i) the continuity of displacements and
stresses atz = 0 andz = � � l and (ii) the free surface
conditions atz = � l interfaces, we find a16 � 16
system. The zero values of its determinant correspond
to the guided waves in the structure.
Putting kx = 0 in the 16 � 16 system, we obtain
particular solutions which correspond to the cutoff-
frequencies of the guided modes into the structure. The
equations (7), (8) correspond to the cutoff-frequencies
of the longitudinal waves (the transversal ones are
identical provided that we replace the index L by T).hH(1)1 �!�L�H(2)1 �!�Le�aL���H(2)1 �!�L�H(1)1 �!�Le�aL��i sin((1 � �)!nLP )�hH(1)0 �!�L�H(2)1 �!�Le�aL���H(2)0 �!�L�H(1)1 �!�Le�aL��i 
os((1 � �)!nLP ) = 0;

(7)hH(1)1 �!�L�H(2)0 �!�Le�aL���H(2)1 �!�L�H(1)0 �!�Le�aL��i sin((1� �)!nLP )�hH(1)0 �!�L�H(2)0 �!�Le�aL���H(2)0 �!�L�H(1)0 �!�Le�aL��i 
os((1 � �)!nLP ) = 0:
(8)

In Eqs.(7), (8), we introduce the dimensionless
quantities: ! = ke l which is the unknown variable
(dimensionless cutoff-frequency), and the parame-
ters: aL = aL l, �L = nLP=aL, nLP = 
e=
LP
(
e = 1500 m/s).

Particular cases:� The casesaL = 0 or � = 0 correspond to a2 l
thickness homogeneous layer in which the longitudinal
and transversal waves propagate with the
LP and
TP
velocities and the cutoff-frequencies are these of the
Lamb modes ones (Table 1).� The case� = 1 corresponds to a2 l thickness
inhomogeneous layer in which the acoustical velocities
L and
T present a symmetrical gradient (Tables 1 and
2).
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2 Numerical applications and discussion
For the numerical applications, we have taken
LP =2747 m/s, 
TP = 1388 m/s and� = 1191 kg/m3, i.e.

the characteristics of polystyrene.
In the Table (1) (respectively Table (2)), we present

the longitudinal cutoff-frequencies! 2 (0; 20) foraL = 0:3 (respectivelyaL = �0:3) and for different
values of the parameter� varying from2l thickness ho-
mogeneous layer (� = 0) to 2l thickness inhomoge-
neous layer (� = 1). The bolded values of! do not
satisfy the assumption of high frequencies and conse-
quently, they do not serve for the ultrasonic characteri-
zation of the inhomogeneous zone.� = 0 � = 0:1 � = 0:3 � = 0:5 � = 0:9 � = 1

2.87 2.89 2.95 3.07 3.43 3.54
5.75 5.75 5.77 5.88 6.45 6.65
8.63 8.66 8.80 8.99 9.76 10.06

11.50 11.51 11.62 11.93 12.92 13.3214:38 14:42 14:59 14:93 16:20 16:7017:26 17:27 17:48 17:87 19:40 19:9820:14 20:19 20:40 20:90 22:66 23:34
Table 1: Cutoff-frequencies! of guided longitudinal
modes foraL = 0:3.� = 0:1 � = 0:3 � = 0:5 � = 0:7 � = 0:9 � = 1

2.87 2.80 2.68 2.54 2.39 2.32
5.75 5.73 5.62 5.38 5.08 4.93
8.60 8.46 8.29 8.00 7.58 7.35
11.50 11.38 11.07 10.70 10.16 9.8614:34 14:17 13:82 13.32 12.68 12.3017:25 17:02 16:63 16:00 15:24 14:8020:08 19:86 19:37 18:64 17:76 17:25

Table 2: Cutoff-frequencies! of guided longitudinal
modes foraL = �0:3.

Comparatively to the homogeneous layer (� = 0),
we observe that the cutoff-frequencies present a posi-
tive shift for aL > 0 (Table 1) and a negative shift foraL < 0 (Table 2). WhenjaLj increases, the absolute
value of the shift increases and this shift is larger for
the high frequencies.
For a given value ofaL we observe that:
(i) for any mode, the absolute value of the shift
increases when� increases;
(ii) for any�, the shift is larger for the high frequencies.

From these observations, experimental investiga-
tions should allow a measurement of the shift and
consequently an evaluation ofaL and�. A shift lower

than 30 kHz could not be experimentally measured
because of the precision limits of the device. Then,
the evaluation of these parameters is better at high
frequencies range.
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