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Abstract 

A molecular dynamics computer simulation has been 
carried out for a monatomic, anharmonic, and 
two-dimensional hexagonal model crystal. Central 
forces between the nearest neighbor atoms are 
considered. Pulse input displacements are applied to 
atoms at an end of the crystal, and an atomic excitation 
propagating in the crystal is induced. Displacements, 
velocities, and energies of all atoms in the crystal are 
evaluated. A mass defect - an atom which mass is 
lighter or heavier than the lattice atoms - is placed at 
the center of the crystal. The excitation is scattered by 
the defect, and various aspects of the effect are studied. 
 
Introduction 

We are continuing computer simulation studies on 
atomic excitations in nonlinear mass-spring model 
crystals using the molecular dynamics (MD) method. 
The excitation is produced after applying pulse input 
displacements to certain atoms in the crystal, and the 
resulting displacements, velocities, and energies of all 
atoms in the crystal are computed. We first found that 
solitons or solitary waves could be produced instead of 
or together with phonon excitations in one-dimensional 
chain crystals. The study was extended to the cases of 
two-dimensional square crystal and three-dimensional 
cubic crystal. It was found that the features of the 
atomic excitations were sensitively dependent on the 
magnitude of the crystal anharmonicity and the 
strength of the input pulse. Our published papers 
concerned are cited in the references in [1].  

Our study was further extended to the problem of 
the scattering of the atomic excitation by lattice defects 
in crystals. The simulation was carried out for the cases 
of various kinds of defects in one-dimensional crystals 
[2]. In the present study the computer experiment is 
concentrated to the scattering by a mass defect in a 
hexagonal two-dimensional model crystal.    

 
Methods 

The model crystal adopted in the simulation is 
schematically illustrated in Fig. 1. The Cartesian 
coordinate axes x and y are chosen as shown in the 
figure. These are the <2-1-10> and the <01-10> 
directions in the hexagonal coordinate system. Atomic 
positions are represented as X and Y, which are 
coordinate values normalized by the nearest neighbor 
distance L. The number of atoms are 134 and 34 in the 
x and y directions (201×29.4 in size). The atom at the 
center of the crystal (X=100.5, Y=17) is replaced by a 
mass defect. The input pulse displacement Dp is 
applied along the x direction to all atoms at the left 
edge of the crystal, and movements of all atoms in the 
crystal are induced.   
  The equation of motion for the (i,j)th atom is 

 
m(d2Ri,j/dT2)= - gradφi,j ,                    (1)        

 
where m is the atomic mass, Ri,j is the coordinate of the 
(i,j)th atom, and T represents the time. Here, φi,j is  
the potential between the (i,j)th atom at Ri,j and other 
(p,q)th atoms at Rp,q The potential is represented as 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1:  Two-dimensional hexagonal model crystal 
used in the computer simulation. 
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φi,j = Σ Σ [(C（ｎ－１）/n){｜Ri,j - Rp,q｜ 
p,q n=2,3,4 

-｜Ri,j(e) - Rp,q(e)｜}ｎ], 
        
Ri,j = Ri,j(e) + Di,j,  Rp,q = Rp,q(e) + Dp,q ,                 

(2) 
 
where (e) means that the quantity is in the equilibrium 
position, and Di,j and Dp,q are the displacements of the 
(i,j)th atom and the (p,q)th atom from their equilibrium 
positions. Here, central forces are considered to act 
between the atoms, and the anharmonic force up to the 
third order, or the lattice anharmonic potential up to the 
fourth order, is taken into account. The coefficients C(1), 
C(2) and C(3) are the first-, second-, and third-order force 
constants, respectively. 

When the atoms in the crystal are moving, the 
equations of motion for all atoms are numerically 
integrated, and the components of displacements of 
atoms are determined. The velocities of all atoms are 
also computed. Thus the total (potential + kinetic) 
energy E of each atom can also be determined. As 
described previously [1], the effect of the next nearest 
neighbor (nnn) interatomic interaction is not serious in 
the case of 2D crystal, and only the nearest neighbor 
(nn) interaction is taken into account.  

 In the simulation, a system of MD units is used [1]: 
atomic mass m=1, nn distance L=1000, time T=1, and 
force constant C（１）=1. In addition, a discrete time 
interval (MD steps) is used, and in this study 1 MD 
step=0.05 MD unit. The MD step is chosen such that 
the time step is sufficiently shorter than the atomic 
vibration period. 

In the present computation, the second- and the 
third-order force constants are chosen as C(2)= - 0.1 and 

C(3)=0.01 (MD units). The C(2) value is arbitrary, while 
C(3) is chosen according to the relation C(3)=[C(2)]2. By 
this choice the contributions of the second- and the 
third-order anharmonicity become of the same order. 

In this study, largely different values of input pulse 
displacement are chosen: Dp=0.5 and 10 (MD unit). 
The aspect of atomic excitation is expected to be very 
different for these two cases. As the mass defect, 
largely different cases are chosen: m´/m =0.02 and 50, 
where m´ and m are the masses of the defect and lattice 
atoms, respectively. 

Results 
When the input pulse is applied, atomic excitations 

are induced and propagate along the x direction. The 
energies E of atoms in the crystal are evaluated as 
functions of the atomic positions and the time elapsed 
after the pulse application. A line of atoms situated at 
X=0 - 201, Y=17 are taken, and the energy E of each 
atom is represented as a function of coordinate X. The 
results for two cases, Dp=0.5 and 10 are shown in Figs. 
2 and 3, respectively. Three cases of “light mass 
defect” m´/m=0.02, “defect-free” m´/m=1, and “heavy 
mass defect” m´/m=50 are shown in each figure. 
Several energy peaks are seen in E vs X, and the 
figures are snapshots at the time when the leading  
energy peak reaches the position X=110. Since the 
mass defect is at the position X=100.5, Y=17, it is seen 
that the excitation rather easily passes the defect. 
Namely, the excitations are not so strongly scattered.  

The results in Figs. 2 and 3 will be compared. It has 
been shown that in anharmonic model crystals atomic 

    
 

 
 
 
 
 
 
 
 
 

Figure 2:  Snapshot of atomic excitations for small  
input case. 

 
 
 
 
 
 
 
 

 
 
Figure 3:  Snapshot of atomic excitations for large  
input case. 
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excitations are mainly phonons or solitons when the 
applied input pulse is relatively small or large. In our 
previous papers cited in [1], the appearance of soliton 
excitation has well been proved through the following 
facts: the energy of excitation is sharply concentrated 
in space, the characteristic feature of kink-like spatial 
distribution of atomic displacement in the excitation 
can be seen, the propagation velocity of the excitation 
is higher than that of phonons, when two excitations 
are collided there is no interaction between the two and 
they pass freely with each other, and so on. In the 
present case, we can see typical phonon and soliton 
excitations in Figs. 2 and 3, respectively: longitudinal 
and transverse phonons are seen in Fig. 2, and multiple 
solitons composed of two soliton peaks followed by 
weak phonon excitations are seen in Fig. 3. We call 
these the “phonon case” and the “soliton case”. 
  In the present study, the scattering of the two kinds 
of excitations by a mass defect is investigated. The 
observation of the snapshot is not powerful to detect 
the scattering effect as previously mentioned. Thus, the 
following computer experiment was carried out. After 
the excitation passes through the defect at X=100.5, 
Y=17, the energy of each atom on the atomic line 
perpendicular to the propagation direction (x direction) 
is evaluated. The evaluation is made at two positions: 
X=110 (near to defect) and X=170 (far from defect). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4:  Distribution of energy of atoms on a line 
perpendicular to the propagation direction for phonons. 

The results are shown in Figs. 4 and 5 for the phonon 
case and for the soliton case, respectively. Here the 
energy is represented as a function of position Y for the 
light mass (m´/m=0.02) and heavy mass (m´/m=50) 
cases. The energy En means that the value is 
normalized by the energy for the defect-free case 
(m´/m=1). In the figures also shown are the times the 
excitations arrive at the observed positions, X=110 and 
X=170. The arriving times are represented in unit of 
MD step (mds). The propagation velocity of soliton is 
higher (mds is smaller) than that of phonon.     
 The overall features of the scattering are almost 
similar for the phonon case and for the soliton case. 
(a) Near to defect. 
(i) For light mass case, En is smallest at the atomic 

position just behind the defect. As the atomic 
position leaves from here along the y direction, En 
becomes larger and approaches the unity.  

(ii) For heavy mass case, the behavior is the reverse. 
Namely, En is large at the position behind the 
defect. Change of En with position is turned over 
compared with the light mass case. 

(b) Far from defect. 
For both light and heavy mass cases, the change of  
En with position becomes rather smaller and  
monotonous. However, still the effect of the 
scattering by the defect remains. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5:  Distribution of energy of atoms on a line 
perpendicular to the propagation direction for solitons. 
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The above results can qualitatively explained as 
follows. The light mass defect is considered to act for 
the propagating excitation just as the case of a free 
surface for a propagating elastic wave. A reflection of 
the excitation occurs by the defect, and a decrease of 
the energy results behind and near the defect. The 
energy increase at other positions is due to the 
conservation of energy in the crystal. In the case of 
heavy mass defect, the movement of defect is induced 
by the incident excitation, and apparent increase of 
energy of atoms occurs behind and near the defect. The 
atomic energy of the defect atom is rather big because 
of the large mass. In both the light mass and heavy 
mass cases, the disturbance of the energy distribution 
becomes smaller at position far from the defect. This is 
due to the smoothing of energy through the interatomic 
interactions. Finally it is noted that the scattering effect 
near the defect seems to be big in the soliton case 
compared with the phonon case. Also noted is that the 
scattering occurs in an asymmetric manner near the 
defect. These are just the results of the simulation, and 
no definite interpretation can be offered at present.  
 
Discussion 
  We are interested in realizing laboratory experiments 
of producing mechanical solitons with sufficient 
strength. For that purpose, 2D or quasi-2D crystals are 
considered to be promising as described previously in 
our published papers. Thus, the computer simulation of 
solitons in a 2D hexagonal model crystal was taken in 
our study. The reason why the hexagonal crystal is 
selected will be revealed later. In producing solitons in 
crystals, the strength of the input pulse is importent. 
This problem must be studied before the laboratory 
experiment is really started. 

It is of primary importance to apply strong pulse 
input to a specimen in order to produce strong solitons. 
It has been shown that the strain of the applied stress 
pulse must be at least Dp/L=2/1000=0.2%. Usual 
piezoelectric transducers are not applicable for 
producing such a strong pulse. A shock compression 
technology can be used to produce a large stress pulse. 
However, a large-scale apparatus is required for 
performing such an experiment.  

Currently, a method is being developed in which 

large-amplitude stress waves are produced in crystals 
through irradiation of the surface of the specimen by a 
strong short optical pulse [3,4]. Lattice excitation 
having a propagating velocity greater than that of 
phonons was observed, and the authors suggested that 
the excitation was a soliton. Their method is very 
interesting even if their study is still preliminary. We 
are planning to perform such a kind of laboratory 
experiment of soliton production by utilizing the 
knowledge obtained in our computer experiment.         
  The specimen material to be used in the laboratory 
experiment is also very important. We consider that a 
graphite single crystal is a powerful candidate for 
performing the experiment. Graphite is a very common 
quasi-2D hexagonal crystal, and large specimens of 
good quality can easily be obtained. Furthermore, the 
interatomic interaction in the basal plane is not of 
long-range type, which seems to be favorable for the 
soliton production. Keeping these considerations in 
mind, our computer experiments are carried on for a 
2D hexagonal model crystal. It is also of great 
importance to consider the state of real specimen. Real 
crystals always contain various kinds of lattice defects. 
Typical ones are the vacancies and impurity atoms. 
Thus we are doing the present computer experiment, 
where the light mass defect and the heavy mass defect 
are considered to correspond to a vacancy and a heavy 
impurity atom. More extended studies are now in 
progress, and results will appear in the near future. 
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