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Abstract 

Excitation 
transducer 

   The influence of viscosity is studied for points with 
arbitrary radial coordinate respectively to the axis of 
radiation force. The magnitude and space distribution 
of induced strain have been found for different ratio 
between involved parameters. At strain relaxation the 
positive additive to displacement caused by viscosity 
decreases with time and does not depend on radial 
coordinate. At the presence of viscosity the magnitude 
of initial shear strain (before the shear waves escape 
the excitation area) is less for tissue particles inside 
the excitation area and greater out it. The developed 
theory correctly describes the functional dependencies 
of shear strain found experimentally and enables the 
assessment of tissue viscoelastic parameters using 
radiation force based methods.  
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Introduction 
   Several experimental methods can be used to 
research the elastic properties of soft tissues. They 
include Shear Wave Elasticity Imaging (SWEI) [1-3] 
and Acoustic Remote Palpation (ARP) [1,4-6] which 
are based on the excitation of strain by radiation force 
of focused acoustic beam, as it is shown in Fig. 1.  
   The viscosity is one of the distinctive features of 
biological tissues so they exhibit the viscoelastic 
behavior. The viscosity can be evaluated only at the 
presence of nonuniform distribution of tissue motion 
because the viscous friction is conditioned by velocity 
gradients. Thus at research of viscoelasticity it should 
be used the dynamical source of displacement fields 
producing the velocity distribution localized enough 
to provide the proper level of viscous force. ARP and 
SWEI satisfy these requirements because in both 
methods the dynamical shear strain is localized 
initially mainly in the focal area of ultrasonic wave 
beam. The difference consists in the fact that at ARP 
the tissue response is analyzed for directly enforced 
points in the focal area. SWEI grounded on the 
analysis of dynamic response in more wide area due 
to the appearance of traveling shear waves. The shear 
wave speed tc µ ρ=  is determined by shear modulus 

 although this way of it estimation is not quite local 
as any wave method (principle of uncertainty). 
µ

   The strain induced by radiation force of ultrasonic 
beam with amplitude modulation was discussed in 
details by Rudenko et al. [1]. This consideration gives 
a clear disclosure of tissue under local pulse loading. 
It establishes a linear dependence of displacement 
magnitude  on  the  pulse duration  τ   and predicts the 

 
Figure 1 : Schematic of ARP and SWEI methods 

 
strain decreasing in the focal area with time due to the 
formation of shear waves propagating away from the 
beam axis. However the derived dependence of strain 
relaxation on viscosity is not so valid. There are 
unclear also the lateral distribution of strain fields, its 
dependence on viscosity and details of strain 
relaxation for distant from the beam axis points which 
motion is caused by passing waves. At that a 
numerical solution of motion equations [4] does not 
show clearly the functional dependencies on tissue 
viscosity and elasticity suitable for their estimation. 
The research of these problems is important for 
medical implementation of ARP and SWEI methods. 
 
Method and results 
   In the general case the integral expression for axial 
displacement derived with the radiation force of pulse 
focused beam with Gaussian profile has the form [1]: 
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Here,  is the Bessel function of the first kind, 
zeroth order;  is the radial coordinate;  is the speed 
of ultrasound; α  is the attenuation coefficient of 
ultrasound; ν η ρ=

a 1e−

 is the kinematic shear viscosity; 
 is the radius of beam at level  at the transducer’s 
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surface;  is the beamwidth in the focal plane so 
the value 

12aγ −

12aγ −
02r ≡

R

 is the beamwidth at level  of 
ultrasound intensity; γ π  is the focusing 
degree;  is the geometrical focus;  is the space 
peak and pulse average intensity. The Eq. (1) is true at 
a small radial displacement, i.e. for planes not far 
from the focal depth. In order to simplify the 
analytical derivation we will assume the excitation 
pulse having Gaussian form: 
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   In the focal plane the excited strain is represented by 
some packet of cylindrical shear waves (see Fig.1). 
The range of variation  corresponding to the 
negative radicands in Eq. (1) describes the domain of 
wave components attenuating aperiodically due to the 
viscous damping so the parameter  indicates some 
dimensionless cutoff wave number. In the limit case 

 the negligible part of the total energy belongs 
to the waves damped aperiodically. Further we will 
assume . Taking into account that the minimum 
wave length of induced packet is defined by diameter 
of beamwidth, it means that contribution of aperiodic 
oscillations is not too much. At that viscosity is quite 
enough to reduce the displacement magnitude due to 
the absorption of low-frequency waves.  

ν

yν → ∞

 
The relaxation of induced shear strain 
   For description of strain relaxation we will consider 
an extreme case of big time , when integration 
with respect to time can be extended to  and 
integrand can be divided into even and odd functions. 
At that the desired value of  takes the form of 
tabulated integral. The relaxation in a given area starts 
just after shear waves have left it [1]. For the focal 
area the proper condition can be written as follows 

+∞

                                 .                         (2) 
Taking into account (2) we find that the main 
contribution gives the range of integration: 

. 
Therefore the radicals in Eq. (1) may be put equal to 
unity. For distant from the beam axis areas it is 
necessary to take into account a delay time caused by 
wave passing up to the point of view. The proper 
inequality tt r c  together with (2) ensure that the 
argument of the Bessel function satisfies to inequality 
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that allows to put equal to unity the Bessel function. 
As a result the displacement (1) takes the form: 
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where integral can be expressed through the error 

functions 1( 2ti c ty aν γ −Φ ± ) . Substituting the known 
asymptotic form for error functions at big argument 
we find the final representation for displacement: 
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Note that the model derivation [1] gives a formula 
with another sign of viscous term.  
 
Spatial distribution and displacement magnitude 
   The influence of viscosity on displacement fields 
can be studied considering the case of small times and 
short pulses: . Then the integral on time 
in Eq. (1) can be written as a sum of two integrals 

 with limits of integration from  up to  
and from  up to t , respectively. The dependence on 
the time can be neglected entirely in the limiting case  

1
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that corresponds actually to the consideration of shear 
strain at , when . For clearing up the role of 
viscosity it is enough to write down the first two terms 
in expansion of  as series of 
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Here, 3 2,0 ( )M x  is the Whittaker function. Using the 
known functional equality for Whittaker function we 
get the strain distribution induced by impulse force:  
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   The Eq. (5) describes the instantaneous lateral 
distribution at the moment of the radiation force 
extreme. At this moment the additional viscous term 
is greater as the squared beamwidth radius is less 
because the radius  is a spatial range of induced 
velocity gradients. In this case the influence of the 
viscous force depends also on the pulse duration τ .  

0r

   Another result can be derived for the time points: 
                                 .                       (6) 1

t tc c t aτ −� �
The direct series expansion of Eq. (1) accounting the 
square of small ratio 1 1t aγ − �c t  and integration give 
an expression similar to Eq. (5): 
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The relative variation of strain fields is linearly 
dependent on the time since the inertial particle 
motion results in prolongation of viscous force effect.  
   More complicated situation has a place in the case 
                               ,                          (8) 1

t tc c t aτ −� ∼
when displacement stops increasing and begins to 
decrease due to the formation of shear waves. Yet 
prediction of maximum value is possible since the 
turning point is about 1

0 tcγ −=t a . Substituting of  0t
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into Eq. (7) gives following evaluation formula: 
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   The dependence of spatial distribution on viscosity 
computed using Eq. (5) is shown in Fig. 2a. Figure 2b 
depicts the increasing through the time of the viscous 
term. The displacement fields turn out to be slightly 
wider than that for ultrasonic intensity.  
   The short pulses best of all permit to reveal the 
tissue viscosity. In the case of the middle pulse length 
                                  с                        (10) 1

t a cτ γ − ≤∼
the pulse termination contemporizes with the shear 
waves leaving. The maximum displacement should be 
about the pulse ending but its functional dependencies 
can be somewhat others compare to Eq. (9). 
   The tissue loading with very long force impulse can 
be disclosured by putting t  into Eq. (1) and using 
the asymptotic form at great 

0=
12c aτ γ − �1t  to give: 
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where  is the hyperbolic Bessel function. The 
distribution (11) does not follow the radiation force 
profile independently on the viscosity and decreases 
much more slowly. Substituting the asymptotic form 
for Bessel function at great r  into Eq. (11) we have 
no exponential, but power-behaved field decreasing: 
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Such  behavior  is  typical for localized  static  loading 
 

 
Figure 2 : Normalized distributions: a) – ; 

b) -  (upper curves). Lower curves 
correspond to the distribution  

( ,0)S r
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and has place in particular for strain fields associated 
with the infinitely small distributed force volume [7]. 
 
Discussion and conclusion 
   A specific feature of Eq. (3) for strain relaxation is 
its independence on coordinate , so the relaxation in 
all excited areas passes in the similar way. The strain 
relaxation is sluggish due to the damping of high-
frequency components. At that the viscous term has 
always a positive sign so irrespective of the effect of 
viscosity on the initial shear strain the displacement at 
relaxation is more as greater viscosity. This fact is 
confirmed by numerical computation at different 
values of viscosity [4]. Figure 3 shows clearly that 
corresponding graphs cross. The relative viscosity 
contribution is determined by the ratio 

r

η  and at the 
given value of this ratio the displacement magnitude 
turns out to be greater in tissue with smaller hardness. 

µ

   It follows from Eqs. (5), (7) and (9) that in the 
absence of viscosity the lateral distribution in the focal 
plane duplicate the radiation force profile. The tissue 
viscosity leads to the field distortion differing for 
points inside the focal area and outside it. For inside 
points the displacement is less than that in the absence 
of viscosity, and for outer points is greater. This result 
can be understood accounting that quickly moving 
particles inside the focal area are braking by 
surroundings contrary to the particles in peripheral 
region for which the viscous force is accelerating. 
   The tissue displacement along the entire propagation 
path from the transducer to the focus was discussed 
minutely in several papers [1,5,6] whereas the lateral 
profile of strain fields has not been studied in details. 
The usually observed displacement magnitude at 
points aside the focal area shows actually the peak 
value in propagating shear wave. Such kind lateral 
distributions in tissue phantom were detected by 
Andreev et al. [2] and were roughly coincided with 
the transverse size of the beam except for the 
peripheral area, as it is shown in Fig. 4  
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m  a)    The principal feature of the strain field (11) is its 

independence on the pulse length. Thus the 
distribution formed to the middle of the force action is  1 2    Curve 3 
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Figure 3 : Displacement through the time [4] 
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Figure 4 : Peak displacement in a shear wave [2] 

 
constant and further effect of radiation force will not 
result in strain increase. In other words the long force 
impulse in its stationary phase effects similar to the 
static loading. The viscosity contribution can be 
neglected in this case whereas the dependence on the 
shear modulus is more strong compare to Eq. (9). 
Figure 5 shows the magnitude increasing and bringing 
to some saturation level with the growth of the pulse 
duration [8]. The same by its physical nature result 
was obtained by Nightingale et al. using long 
sequences of very short pushing pulses [6].  
   The theoretically predicted by Eq. (9) value of 
displacement magnitude is in a good agreement with 
the experimental one. Substituting into (9) numerical 
values of parameters , 1 1.55a mγ − = m ( ) 2145tI W c , 

, , , = 31g cm , 

tc = , and , which correspond to 
[9], we get for η = , and r=0, the value 

 that is very close to the measured one. 0 (0)S

m=

7.0R cm 10.041cmα −= 2.18msτ = ρ =

2.3m s 31.81 10c m s= ⋅
0.25Pa s⋅

6 mµ≈
   The present theory is developed in approach, which 
does   not   guess  a   smallness   of  parameter . In 1yν

−

 

 
Figure 5 : Displacement: a) – as a function of pulse 
length [8]; (b) – induced by sequence of pulses [6] 

general the physical parameters of tissues and beams 
used in ARP and SWEI are in a good agreement with 
this assumption. The found features of shear strain can 
be observed experimentally [8,9], but the most 
important question to be settled for medical 
applications is the proper algorithm for quantitative 
assessment of tissue elasticity and viscosity. The 
usage of Eq. (3) gives such possibility as well as 
solution of combined Eqs. (3) and (9) after fitting of 
some numerical coefficients which depend on the 
parameters of used excitation transducer and pulses.  
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