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Abstract 

Acoustic scattering (acoustic resonance scattering 
in particular) are described for a porous sphere 
embedded in a solid matrix. A three phase composite 
model for evaluating the effective elastic moduli of 
porous spheres is introduced. Numerical computations 
of the acoustic resonance scattering spectra by a 
porous graphite sphere with changing porosity in iron 
matrix are made by using the acoustic resonance 
scattering theory. Possible applications of acoustic 
resonance scattering by solid and porous spheres are 
discussed. 
 
Introduction 

In 1978, Flax et al proposed an acoustic resonance 
scattering theory[1], showing that the scattering 
spectrum of a spherical or cylindrical scatterer may be 
decomposed into two contributions—a background 
and the resonance of scatterer. Whenever the 
resonance appears the surface waves (or interface 
waves) circumnavigating the scatterer match each 
other in phase. The resonance scattering theory also 
predicts that measurements of resonance scattering 
spectra could be used to inversely deduce the density 
and elastic constant of a fluid sphere embedded in 
elastic solid[2]. Excellent experimental investigations 
of ultrasonic scattering by elastic spheres in solid 
matrix have been made to verify the resonance 
scattering phenomenon[3]. In view of academic 
importance in acoustics and possible applications in 
nondestructive evaluation (NDE) of composite 
materials, acoustic scattering of spherical scatterers in 
solid matrix has been a subject which attracts much 
attention of investigators[4,5]. It is noticed that in some 
particle-reinforced composites, the spherical fillers 
such as carbon black and metal powers belong to 
porous media. Take nodular cast iron as an example, 

the fillers in the composite are porous graphite, the 
porosity of which may change obviously with 
manufacturing processes. To assess the porosity in 
such a composite, ultrasonic method needs  to be 
consulted. Therefore, it is one of our motivations to 
carry out the study on acoustic scattering by porous 
spheres. 
 
Acoustic resonance scattering of a sphere 

To deal with acoustic scattering problem of an 
elastic sphere, it is the most convenient to use a 
spherical polar coordinate system with the origin at 
the center of the sphere. The incident wave is 
supposed to be a plane longitudinal wave propagating 
along the polar axis ( z  axis). Thus the scattered 
waves in the matrix and the excited waves in the 
elastic sphere are all symmetric with respect to the z  
axis, depending only upon the coordinate variables r  
and θ . In this instance, the displacement vectors of 
the incident, scattered and excited waves can be 
represented respectively in terms of different potential 
functions Φ  and Π [6] 

( )ˆrrU = −∇Φ +∇× ∇× Π  
r

     (1) 

where Φ  and Π correspond respectively to the 
displacement potential functions for longitudinal and 
transverse waves, r̂  is the unit vector in the radial 
direction, both Φ  and Π  satisfy the scalar 
Helmholtz equation, and can be expanded by spherical 
normal functions ( 0iΠ =  for the incident longitudinal  
wave). By using the boundary conditions at the 
interface between the matrix and scatterer, the 
coefficients mA  and mB  respectively for the 
scattered longitudinal and transverse waves can be 
obtained.  
 The potential functions sΦ  and sΠ for the 
far-field scattered waves may be approximated as[1] 
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where 0Φ  is the amplitude of the potential function 
of incident wave, 1k  and 1K  are  the  wave 
numbers for longitudinal and transverse waves in the 

matrix, ( )ppf θ and ( )psf θ  are usually termed as the 

form functions for the scattered waves in which 
superscript pp  is for scattered longitudinal waves 
and ps for scattered transverse waves. The 
normalized form function amplitudes for θ π= , 
which are called the backscattering spectra, have the 
following expressions 
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where a  is the radius of scatterer. According to the 
acoustic resonance scattering theory[1], the resonance 
scattering spectra for the m-th mode partial wave may 
be finally written as  

( ) ( ) ( )
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where mA ′  and mB ′  are the scattered wave 

coefficients from a rigid sphere or cavity with the 
same dimension as that of the scatterer. 
 
Effective moduli of porous medium 

The graphite particles in nodular cast iron 
composites are porous in structure. Each particle is 
assumed to have solid frame and air-filled pores. Here 
we use a so-called three phase composite model to 
compute the effective elastic moduli eK and eµ  of a 
void- containing solid[7].  

Fig.1 illustrates the concept of the model, in which 
the outer part with dilute dots represents the effective 
medium and the spherical shell with outer radius b  
is the solid frame (Its elastic moduli and density are 

mK , mµ and mρ  respectively). The inner surface with 
radius c  is bounded by air with bulk modulus iK  
and density iρ . The volume concentration of voids  

 
 
 
 
 
 
 
 
 
 
 

Fig.1 The three phase composite model for evaluating the 

effective elastic moduli of a void-containing solid 

(i.e. porosity) is denoted by ( )3c bβ = . One may 

obtain the effective bulk modulus based on the 
composite model[7] 
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The effective shear modulus eµ may be found from 
the following equation 

2

2 0e e

m m

A B Cµ µ
µ µ

   
+ + =   

   
       (6) 

where , ,A B C  are the functions of the Poisson ratio of 
the matrix. According to the mixture rule the effective 
density (1 )e m iρ ρ β ρ β= − + . 

The wave numbers in the porous medium can be 
calculated from eK , eµ and eρ . Following the 
preceding procedures, the backscattering spectra and 
resonance modes of a porous sphere in solid matrix 
can be evaluated. In addition, the effective elastic 
moduli eK  and eµ are varied remarkably versus the 
porosity of the porous scatterer, which may provide us 
a convenient way to examine the scattering 
characteristics of scatterers with different elastic 
moduli and densities embedded in the same matrix. 
 
Numerical results 

Numerical computations have been made for 
nodular cast iron composite as an example to analyze 
acoustic scattering by porous spheres in solid matrix. 
Figs. 2 (a) and 2(b) present the backscattering spectra 

1 ( )ppa f π−  and 1 ( )psa f π−  of a porous graphite sphere  

effective medium

c

b 

graphite 

air
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Fig.2 Backscattering spectra 1 ( )ppa f π−  and 1 ( )psa f π−  by a 

porous graphite sphere in iron matrix ( 0.2)β =  
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Fig.3 Resonance backscattering spectra 1
( ) ( )pp

m resa f π−  and 
1

( ) ( )ps
m resa f π−  of partial waves with order 1, 2,3, 4m =  by a porous 

graphite sphere in iron matrix at frequency range 

1 0 5k a = − ( 0.2)β =  

in iron matrix. It is clear from these plots that the 

shapes of spectra 1 ( )ppa f π−  and 1 ( )psa f π−  differ 

obviously from each other. Since a backscattering 
spectrum is a linear combination of the scattering 
spectra of all the partial waves, precise discernment of 
the resonance properties of the porous sphere is 
difficult. To better understand the resonance of porous 
spheres, we have calculated the resonance scattering 

spectra 1
( ) ( )

pp

m resa f π−  and 1
( ) ( )

ps

m resa f π−  of some partial 

waves by using Eq. (4), as shown in Fig.3 
In the calculation the backscattering spectrum of 

a cavity is taken as the background. As seen in Fig.3, 
two kinds of spectra are very similar and reflect very 
clearly the resonance phenomenon. Physically, the 
resonance frequencies in the resonance scattering 
spectrum are the same as those in the resonance  
vibration spectrum, because resonance scattering 
occurs only when the frequency of incident wave is 
identical with one of the resonance frequencies of 
scatterer. It is shown in Fig.3 that there are many 
peaks in a partial wave scattering spectrum of any 
order, say order m , so two labels (namely m  and l ) 
are needed to define a resonance mode of a spherical 
scatterer.  
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Using Eq.(4), we have calculated the 
backscattering spectra for the partial wave of order 1 
( 1m = )by a spherical graphite scatterer with different 
porosities in iron matrix at frequency range up to 

1 5.0k a =  (see Fig.4). The backscattering spectra are 
found to vary greatly with changing porosity and the 
resonance frequencies can be determined. To get more 
information about porous spheres in composite, we 
have computed the normalized resonance frequencies 

1res La vω  of some different modes ( 1, 1,2,3,4,5m l= = ), 
which are gathered in Fig.5 ( 1Lv  is the longitudinal 
wave speed in the matrix). It is found that the values 
of 1res La vω  decrease linearly as β  increases for the 
examined vibration modes. These results may provide 
us a physical foundation for properly using ultrasonic 
scattering technique to evaluate porous particles in 
composite materials based on the positions and shapes 
of resonance modes. 
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Fig.5 Normalized resonance frequencies of some different modes 

by a spherical graphite scatterer in iron matrix 

 
Conclusion 

In this paper a physical model is briefly described 
for studying the acoustic scattering by spherical 
scatterers in elastic solid. A special attention is paid to 
the resonance scattering of a porous sphere with 
changing porosity. The numerical results show that the 
resonance peaks in the scattered partial waves of each 
order are closely related to the porosity of spherical 
graphite scatterer. The resonance frequencies move to 
the lower values with increasing porosity. Therefore 

experimental measurements of the backscattering 
spectra and resonance frequencies may be used in 
evaluation of the porosity of spherical graphite in 
solid matrix. 
 The resonance frequencies of a layered sphere in 
free state were calculated by Chen and Ding[8]. If a 
vibrating sphere (or shell) is loaded with liquid or 
solid, the calculations of resonance frequencies are 
complicated because solution of complex roots of a 
characteristic equation should be dealt with. The 
resonance scattering method discussed in the paper is 
simple for determining the resonance frequencies of a 
loaded sphere. 
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